首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a large epidemiologic study of lung cancer, 55,000 subjects, we have conducted a nation-wide survey of particulate exposures in the US trucking industry. The goal is to differentiate the risks from various types of particulate exposures, such as traffic emissions and general air pollution. We hypothesize that exposures defined by job and work site characteristics can be linked with subjects using their personal job histories. This report covers exposures at 36 randomly chosen large truck freight terminals in the US. Measurements were made of PM2.5, elemental carbon (EC), and organic carbon (OC) upwind of the terminal (background) and in work areas, and by personal samples. Significant differences in exposure intensity, microg m(-3), were found for work locations and jobs relative to background levels (GM[GSD]) at terminal sites: PM2.5 9.8[2.34], EC 0.5[3.24], and OC 5.0[1.76]. Using EC as a marker for diesel particles, work locations varied significantly: office 0.3[3.7], dock area 0.7[2.89] and shop area 1.5[3.52]), as did job titles (non-smokers): clerk 0.1[9.98], dock worker 0.8[2.13], and mechanic 2.0[3.82]. Cigarette smoking contributed substantially to personal exposures, approximately doubling PM2.5 and OC, but having less of an effect on EC. Large differences were seen across the terminal sites due to differences in local regional air pollution levels from traffic and other sources. We conclude that it will be possible to estimate current exposures of the cohort using an exposure assignment matrix based on job title, work location, and terminal site. This distribution overlaps substantially with the general public's exposure to these sources.  相似文献   

2.
Thermal-optical analysis (TOA) is a popular method to determine aerosol elemental carbon (EC) and organic carbon (OC) collected on quartz fiber filter. However, temperature protocol adopted in TOA has great effects on OC and EC results. The purpose of this study is to investigate and quantify the effects of maximum temperature (T(max)) and residence time (RT) for each step in helium stage on ECOC measurements. Fourteen typical source samples and 20 ambient samples were collected and six temperature programs were designed for this study. It was found that EC value decreases regularly as T(max ) ascends, i.e., EC results from T(max) of 650 degrees C, 750 degrees C and 850 degrees C are 0.89 +/- 0.06, 0.76 +/- 0.10, 0.62 +/- 0.13 times EC value from T( max) of 550 degrees C, respectively, and the magnitude of EC drop (EC(d), percent) is significantly correlated with OC abundance in total carbon (R(OC/TC)), expressed as EC(d) = 66.8R(OC/TC)-14.4 (r = 0.87); pyrolized OC(POC) values are also sensitive to T(max), but there are various trends for samples with different OC constituents. On average of the samples studied here, prolonged RT reduces EC values by only 3%, almost negligible compared to the effect of T(max), and reduces POC by 9%, much less than that by previous report.  相似文献   

3.
Total suspended particulate (TSP) samples were collected weekly over a period of one year at four European sites during 1995/6. Two sites were in London-a Central London site (CL, St Paul's Cathedral) and a suburban North London site (NL, Bounds Green); the other two sites were in Porto, Portugal and Vienna, Austria. TSP was collected using a low volume sampler. Organic carbon (OC) and elemental carbon (EC) concentrations were measured using a thermal-optical carbon analyser. Parallel samplers collected TSP for subsequent GC-MS analysis of thirty-nine combustion-associated organic compounds; 16 polyaromatic hydrocarbons (PAHs) and 23 n-alkanes. OC and EC correlate well at all sites (r2 = 0.39-0.65), although the London inter-site correlations were low, suggesting that local sources of OC and EC have a significant influence on local concentrations. Concentrations do not vary widely across the four urban sites, despite the significant differences in urban characteristics. Seasonal patterns of OC:EC ratios were similar at the London and Vienna sites, with highest ratios in autumn and winter, and annual mean OC:EC ratios were identical at these sites. The Carbon Preference Index (CPI) indicated vehicle emissions to have a stronger influence over particulate concentrations at the Vienna and central London sites; there was a stronger biogenic signature in north London and Porto. In addition, two PAH compounds (pyrene and fluoranthene) previously associated with diesel exhaust, were correlated with OC and EC concentrations at the London and Vienna sites.  相似文献   

4.
The contributions of long range transported aerosol in East Asia to carbonaceous aerosol and particulate matter (PM) concentrations in Seoul, Korea were estimated with potential source contribution function (PSCF) calculations. Carbonaceous aerosol (organic carbon (OC) and elemental carbon (EC)), PM(2.5), and PM(10) concentrations were measured from April 2007 to March 2008 in Seoul, Korea. The PSCF and concentration weighted trajectory (CWT) receptor models were used to identify the spatial source distributions of OC, EC, PM(2.5), and coarse particles. Heavily industrialized areas in Northeast China such as Harbin and Changchun and East China including the Pearl River Delta region, the Yangtze River Delta region, and the Beijing-Tianjin region were identified as high OC, EC and PM(2.5) source areas. The conditional PSCF analysis was introduced so as to distinguish the influence of aerosol transported from heavily polluted source areas on a receptor site from that transported from relatively clean areas. The source contributions estimated using the conditional PSCF analysis account for not only the aerosol concentrations of long range transported aerosols but also the number of transport days effective on the measurement site. Based on the proposed algorithm, the condition of airmass pathways was classified into two types: one condition where airmass passed over the source region (PS) and another condition where airmass did not pass over the source region (NPS). For most of the seasons during the measurement period, 249.5-366.2% higher OC, EC, PM(2.5), and coarse particle concentrations were observed at the measurement site under PS conditions than under NPS conditions. Seasonal variations in the concentrations of OC, EC, PM(2.5), and coarse particles under PS, NPS, and background aerosol conditions were quantified. The contributions of long range transported aerosols on the OC, EC, PM(2.5), and coarse particle concentrations during several Asian dust events were also estimated. We also investigated the performance of the PSCF results obtained from combining highly time resolved measurement data and backward trajectory calculations via comparison with those from data in low resolutions. Reduced tailing effects and the larger coverage over the area of interest were observed in the PSCF results obtained from using the highly time resolved data and trajectories.  相似文献   

5.
Mass concentrations and chemical components (18 elements, 9 ions, organic carbon [OC] and elemental carbon [EC]) in atmospheric PM(10) were measured at five sites in Fushun during heating, non-heating and sand periods in 2006-2007. PM(10) mass concentrations varied from 62.0 to 226.3 μg m(-3), with 21% of the total samples' mass concentrations exceeding the Chinese national secondary standard value of 150 μg m(-3), mainly concentrated in heating and sand periods. Crustal elements, trace elements, water-soluble ions, OC and EC represented 20-47%, 2-9%, 13-34%, 15-34% and 13-25% of the particulate matter mass concentrations, respectively. OC and crustal elements exhibited the highest mass percentages, at 27-34% and 30-47% during heating and sand period. Local agricultural residuals burning may contribute to EC and ion concentrations, as shown by ion temporal variation and OC and EC correlation analysis. Heavy metals (Cr, Ni, Zn, Cu and Mn) from coal combustion and industrial processes should be paid attention to in heating and sand periods. The anion/cation ratios exhibited their highest values for the background site with the influence of stationary sources on its upper wind direction during the sand period. Secondary organic carbon were 1.6-21.7, 1.5-23.0, 0.4-17.0, 0.2-33.0 and 0.2-21.1 μg m(-3), accounting for 20-77%, 44-88%, 4-77%, 8-69% and 4-73% of OC for the five sampling sites ZQ, DZ, XH, WH and SK, respectively. From the temporal and spatial variation analysis of major species, coal combustion, agricultural residual burning and industrial emission including dust re-suspended from raw material storage piles were important sources for atmospheric PM(10) in Fushun at heating, non-heating and sand periods, respectively. It was confirmed by principal component analysis that coal combustion, vehicle emission, industrial activities, soil dust, cement and construction dust and biomass burning were the main sources for PM(10) in this coal-based city.  相似文献   

6.
利用在线高分辨率仪器对2014-2018年南京市PM2.5中有机碳(OC)、元素碳(EC)进行了连续监测,结果表明:离线分析法与在线分析法对OC、EC的测定结果具有很好的线性相关性,离线分析的EC、OC浓度高于在线自动监测值;2014-2018年南京OC与EC的平均质量浓度分别为(6. 38±3. 91)μg/m^3和(3. 12±1. 76)μg/m^3,整体呈下降趋势,冬季OC与EC均较高,夏季两者质量浓度较低。OC和EC均呈现夜间高、白天低的日变化规律,OC与EC第一个峰值均出现在08:00左右,OC第二个峰值出现在20:00前后;夏季OC与EC相关性最低,冬季最高,NO2、CO与OC、EC的相关性总体高于SO2,表明燃料燃烧对碳气溶胶有一定贡献,但没有交通源的贡献显著,夏季O3与OC呈现一定程度的正相关性。利用最小相关系数法(MRS)计算大气OC中一次有机碳(POC)和二次有机碳(SOC),结果显示OC中以POC为主,但SOC呈逐年上升趋势,2018年SOC质量浓度达1. 96μg/m3,在OC中占比达31. 9%,后续颗粒物污染治理的重点可能应关注VOCs。  相似文献   

7.
Aerosol constituents (elemental carbon, organic carbon, soluble ions including organic acids, and selected trace metals) were investigated from samples of a field campaign taking place at Bhola Island in the Bay of Bengal (Bangladesh). The campaign took place in the pre-monsoon season (May 2001) using low volume samplers. Carbonaceous material comprised the majority of the analysed components. The average concentrations of EC and OC were 2.8 and 4.6 microg m(-3), respectively. Oxalic acid was the most abundant dicarboxylic acid (average 268 ng m(-3)) followed by malonic and malic acid. The contribution of carboxylic acids-carbon to organic carbon was 2.0%. Average concentrations observed for sulfate and nitrate were 3.7 microg m(-3) and 1.5 microg m(-3). Two different types of aerosol were identified at the rural background site on Bhola Island during southerly synoptic flow by means of trajectory analysis: air masses were transported from the Bay of Bengal to the sampling site in all cases. However, during "Period 1" they experienced longer residence times over the Indian Ocean, while the "Period 2" trajectories came along the Indian coast or passed over the Indian continent. During Period 1 the concentration levels of soluble ions were a factor of 4-6 lower than during Period 2. The concentrations of EC, OC and K differed less than a factor of 1.5 between the two periods. The Period 1 aerosol showed similarities to the haze layers observed during winter-monsoon conditions south of India during the INDOEX experiment. Based on EC/TC and K/EC ratios we find that around 80% of the carbonaceous aerosol from Period 1 in Bhola is from fossil fuel and only around 50% from Period 2. Absolute concentrations of carbonaceous species, soluble ions and trace metals indicate that the background site on Bhola Island is affected by emissions from urbanized regions of Southeast Asia.  相似文献   

8.
宁波PM10中有机碳和元素碳的季节变化及来源分析   总被引:5,自引:2,他引:3  
为了探讨宁波市大气颗粒物中浓度水平与季节变化,2010年1、5、8、11月分季节采集了宁波市大气中PM10样品,在宁波连续观测了PM10以及有机碳(OC)、元素碳(EC)的浓度变化,并探讨宁波全年各季碳气溶胶污染变化特征;PM10中OC和EC相关性较好,说明OC与EC的来源相同,各采样点PM10中OC/EC的各季均值大部分超过2.0,表明宁波空气中存在一定的二次污染。宁波秋季SOC占OC含量高于其他季节。从PM10中8个碳组分丰度初步判断宁波市颗粒物中碳的主要来源是汽车尾气、道路扬尘及燃煤。  相似文献   

9.
APEC期间京津冀及周边地区PM2.5中碳组分变化特征及来源   总被引:5,自引:0,他引:5  
在APEC会议期间和会期之后,分别采集北京、天津、石家庄、保定、济南5个采样点的PM2.5样品,通过分析碳组分的变化特征,研究京津冀地区污染物减排的影响以及减排后各指标的变化特征,分析大气颗粒物中碳气溶胶的可能来源。采用重量法测定组分中PM2.5的含量,利用热/光碳分析仪测定组分中OC、EC的含量,结果表明,由于采取了污染源减排措施,会议期间PM2.5、OC、EC的质量浓度均低于会期之后;会议期间和会期之后OC与EC均表现出了较好的相关性,r2为0.789~0.983,说明OC与EC的排放源基本相同;会议期间OC/EC为3.11~3.62,表明含碳气溶胶的来源主要是机动车排放,同时也存在一定的燃煤排放,会期之后为3.08~6.10,表明燃煤的排放在碳气溶胶中的比重明显增加,另外OC/EC也表明APEC会议期间和会期之后二次有机碳在各采样点均普遍存在。  相似文献   

10.
于2019年1月27日—3月18日及2020年1月27日—3月18日对西安市细颗粒物(PM2.5)的碳组分浓度进行了在线观测,对比分析了非疫情与疫情期间各常规污染因子、气象要素、PM2.5中有机碳(OC)和元素碳(EC)的污染特征。结果表明:非疫情与疫情期间西安市的气象条件总体水平较为相近。疫情期间的二氧化硫(SO2)、臭氧(O3)浓度相对升高。重污染天气下,除PM2.5外,其他污染物浓度均降低,说明疫情管制对重污染天气污染物浓度的削弱作用明显。疫情期间,PM2.5中的OC组分浓度及占比有显著升高,与疫情期间的各类交通管制导致的机动车尾气排放量显著降低有关。另外,OC与EC的相关性较强,说明污染来源与人类日常生活有关。疫情期间西安市颗粒物中碳组分主要来自各类生物质燃烧,并且存在SOC污染,SOC在OC中的占比达到37.8%。疫情期间重污染天气下,SOC在OC中的占比达到87.5%,说明SOC对重污染天气OC的贡献较大。  相似文献   

11.
采用离线分析法和在线分析法同步监测了武汉市PM_(2.5)中有机碳(OC)、元素碳(EC)和总碳(TC)的浓度,分析了2种方法的差别。结果表明,离线分析法与在线分析法对TC的测定结果具有很好的可比性,2种方法对TC的测定结果显著相关(r=0.970 9)。离线分析法得到的OC浓度普遍高于在线分析法,前者为后者的1.12倍,造成OC结果差异的主要原因可能是采样系统的差异。2种方法对EC测定的相关性较低(r=0.763 0),且2种方法对EC测定的精密度(相对偏差为13.14%)也不如其对TC和OC测定的精密度(相对偏差分别为3.42%和5.95%),造成EC结果差异的原因较复杂。离线分析法测得的OC/EC值明显高于在线分析法,鉴于OC/EC值在颗粒物源解析研究中具有重要意义,需要规范OC/EC分析方法。  相似文献   

12.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

13.
广州市灰霾期PM10的化学组成对能见度的影响   总被引:1,自引:0,他引:1  
采集广州市大气可吸入颗粒物(PM10)样品,并分别对冬、夏两季灰霾和非灰霾期PM10中有机碳(OC)、元素碳(EC)和水溶性离子进行分析。广州市灰霾期大气PM10中的主要化学成分按质量浓度大小排序为OC>NO3->SO24->NH4+>EC(非灰霾期则依次为OC>SO24->EC>NH4+>NO3-),其质量浓度分别为非灰霾期的4.7、12.5、3.7、3.2和2.3倍。相关性分析表明,灰霾期总碳[TC(OC+EC)]及NO3-的质量浓度对大气能见度的降低起主要作用,而非灰霾期则主要是TC和SO24-。  相似文献   

14.
南京大气细颗粒中有机碳与元素碳污染特征   总被引:3,自引:0,他引:3  
为了解南京城区大气细颗粒物中有机碳与元素碳的污染特征,在国控点草场门进行了连续一年的PM2.5采样,分析了有机碳(OC)、元素碳(EC)、ρ(OC)/ρ(EC)污染特征和变化规律。结果表明,采样期间有些PM2.5的日均值超过了《环境空气质量标准》(GB 3095-2012)二级标准,ρ(OC)/ρ(EC)为0.77~4.98,平均值为1.92。PM2.5样品中OC约占18%、EC约占9%。  相似文献   

15.
In recent years, suspended particle pollution has become a serious problem in Taiwan. The carbonaceous materials EC and OC are play important roles in various atmospheric processes. The primary OC/EC ratio approach is applied to assess the contribution of secondary organic aerosol (SOA) to the PM2.5 and PM10 mass at the Taichung harbor sampling site. The results indicated that the average EC and OC concentration were 1.06 and 6.50 μg m−3, respectively, in fine particulate. And the average EC and OC concentration were 4.04 and 40.32 μg m−3, respectively, in coarse particulate at Taichung Harbor sampling site. In addition, and the average EC/OC rations was 8.72 in fine particle, respectively, at Taichung Harbor, Taiwan during summer and autumn period of 2005. The fine particle exhibited high particulate concentrations in October, and lower concentration particulate occurred in August. And in this study OC and EC concentrations in this study are compared with those in other cities. The results of EC and OC concentration in this study are also compare with those other cities.  相似文献   

16.
An intensive two month measurement campaign has been performed during a two year study of major component composition of urban PM10 and PM2.5 in Ireland (J. Yin, A. G. Allen, R. M. Harrison, S. G. Jennings, E. Wright, M. Fitzpatrick, T. Healy, E. Barry, D. Ceburnis and D. McCusker, Atmos. Res., 2005, 78(3-4), 149-165). Measurements included size-segregated mass, soluble ions, elemental carbon (EC) distributions, fine and coarse fraction organic carbon (OC) and major gases along with standard meteorological measurements. The study revealed that urban emissions in Ireland had mainly a local character and therefore were confined within a limited area of 20-30 km radius, without significantly affecting regional air quality. Gaseous measurements have shown that urban emissions in Ireland had clear, but fairly limited influence on the regional air quality due to favorable mixing conditions at higher wind speeds, in particular from the western sector. Size-segregated mass and chemical measurements revealed a clear demarcation size between accumulation and coarse modes at about 0.8 microm which was constant at all sites. Carbonaceous compounds at the urban site accounted for up to 90% of the particle mass in a size range of 0.066-0.61 microm. Nss SO4(2-) concentrations in PM2.5 were only slightly higher at the urban site compared to the rural or coastal sites, while NO3- and NH4+ concentrations were similar at the urban and coastal sites, but were a factor of 2 to 3 higher than at the rural site. OC was highly variable between the sites and revealed clear seasonal differences. Natural or biogenic OC component accounted for <10% in winter and up to 30% in summer of the PM2.5 OC at urban sites. A contribution of biogenic OC component to PM2.5 OC mass at rural site was dominant.  相似文献   

17.
利用2020年12月1日至2021年2月28日合肥市细颗粒物(PM2.5)、有机碳(OC)和元素碳(EC)等环境空气质量监测数据和气象观测数据,分析了合肥市大气PM2.5中OC和EC的污染特征,并探讨了其来源以及气象因素影响。结果表明:合肥市冬季碳质气溶胶是PM2.5中主要组分,随着污染程度的加重,碳质气溶胶的质量浓度逐步增加,但其在PM2.5中的占比先减小后增加。在以PM2.5为首要污染物的不同污染级别天气条件下,OC和EC的相关性说明不同程度下碳质气溶胶来源复杂。OC/EC表明机动车尾气和燃煤源排放是碳质气溶胶的主要来源。二次有机碳(SOC)会随着污染程度的加重而呈现升高趋势。OC和EC在冬季受温度影响较小;较大的相对湿度对OC和EC具有一定的清除作用,明显降水或连续降水的清除作用更加显著;而风速对含碳气溶胶的影响主要出现在污染天气背景下。  相似文献   

18.
Libby, Montana is the only PM2.5 nonattainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby’s elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0–2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0–2.5 μm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools’ indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.  相似文献   

19.
A monitoring method for diesel particulate matter was published as Method 5040 by the National Institute for Occupational Safety and Health (NIOSH). Organic and elemental carbon are determined by the method, but elemental carbon (EC) is a better exposure measure. The US Mine Safety and Health Administration (MSHA) proposed use of NIOSH 5040 for compliance determinations in metal and nonmetal mines. MSHA also published a rulemaking for coal mines, but no exposure standard was provided. A standard based on particulate carbon is not considered practical because of coal dust interference. Interference may not be a problem if an appropriate size-selective sampler and EC exposure standard are employed. Submicrometer dust concentrations found in previous surveys of nondieselized, underground coal mines were relatively low. If a large fraction of the submicrometer dust is organic and mineral matter, submicrometer EC concentrations would be much lower than submicrometer mass concentrations. Laboratory and field results reported herein indicate the amount of EC contributed by submicrometer coal dust is minor. In a laboratory test, a submicrometer EC concentration of 31 microg m(-3) was found when sampling a respirable coal dust concentration over three times the US compliance limit (2 mg m(-3)). Laboratory results are consistent with surveys of nondieselized coal mines, where EC results ranged from below the method limit of detection to 18 microg m(-3) when size-selective samplers were used to collect dust fractions having particle diameters below 1.5 microm-submicrometer EC concentrations were approximate 7 microg m(-3). In dieselized mines, submicrometer EC concentrations are much higher.  相似文献   

20.
因子分析法解析北京市大气颗粒物PM10的来源   总被引:17,自引:3,他引:17  
2004年10月份在北京市6个采样点采集了大气PM10样品,分析了大气颗粒物的质量浓度、元素组成、离子、有机碳(OC)和元素碳(EC)的浓度,并用因子分析模型对颗粒物的来源进行了研究。结果显示,北京市大气颗粒物的来源主要有6类:建筑水泥尘/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘、生物质燃烧尘和燃油尘。用模型计算得到的各源对PM10的贡献率分别为建筑水泥尘/机动车尾气尘/燃煤尘占36.57%、土壤风沙尘占16.07%、二次粒子尘占12.33%、工业粉尘占10.29%、生物质燃烧尘占6.07%、燃油尘占3.84%、其它占14.84%。其中建筑水泥/机动车尾气尘/燃煤尘、土壤风沙尘、二次粒子尘、工业粉尘是大气颗粒物PM10的主要来源。实验表明,在缺少源成分谱时可以用因子分析模型来分析大气颗粒物的来源及其相对贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号