首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
点火能对液化石油气爆炸压力影响的试验研究   总被引:4,自引:0,他引:4  
探讨点火能对多元爆炸性混合气体爆炸威力的影响.以密闭爆炸筒(20 L)内液化石油气(体积分数为5%)-空气混合气体为研究对象,逐步提高点火能量引爆混合气体,分析气体爆炸压力波形图的变化.结果表明,点火能量对气体爆炸压力的影响存在一定规律性,即液化石油气最大爆炸压力的上升速率和爆炸场中的负压峰值都随着点火源能量的增强而增加,但爆炸场中正压峰值的变化不大.本研究对深入认识多元爆炸性混合气体的爆炸特性,以及丰富和完善气体爆炸理论具有一定的参考价值.  相似文献   

2.
为减少乙炔火灾爆炸事故的发生,采用20 L爆炸罐为试验仪器,对常温、初始压力0.1 MPa条件下,不同体积配比乙炔-空气混合气的燃爆特性及氮气对乙炔分解爆炸的影响进行了试验研究,并结合碰撞理论和燃烧反应方程对试验结果进行了理论分析。结果表明:乙炔-空气混合气体随乙炔体积分数增大,最大爆炸压力逐渐升高;在乙炔体积分数为10%~55%范围内,乙炔与空气混合气的最大爆炸压力恒定在1.7 MPa,乙炔体积分数为10%时取得最大爆炸指数(78.14MPa.m/s);乙炔体积分数为55%~100%范围内,混合气体爆炸与初始压力有关,并且初始压力随乙炔体积分数增大而升高;纯乙炔分解爆炸的初始压力为0.18 MPa。氮气对乙炔分解爆炸有一定的抑制作用,并随氮气体积分数增加,抑制作用逐渐增大。  相似文献   

3.
为了研究N2、CO2及其混合气体对丙烯爆炸特性的影响,使用可燃气体爆炸极限试验装置,将气体按一定比例进行混合,从爆炸极限与危险度、临界氧体积分数和惰化效果3个方面研究了N2/CO2混合气体对丙烯爆炸的影响。结果表明:1)N2和体积比分别为2∶1、1∶1、1∶2的N2/CO2混合气体,以及CO2的添加对丙烯的爆炸均有抑制作用,且使丙烯的爆炸范围缩小,爆炸危险度减小,变化趋势近似为线性;2)随着惰性气体体积分数的增加,爆炸极限对应的氧体积分数呈下降趋势,CO2惰化丙烯比N2惰化丙烯时的临界氧体积分数提高了约1.87个百分点;3)结合爆炸三角形图,对比发现,在5种不同的比例下,CO2惰化丙烯时的爆炸区域面积最小,表明CO2对丙烯的抑爆效果更好。  相似文献   

4.
为研究矿井火区中一氧化碳(CO),氢气(H2),乙烯(C2H4)和乙烷(C2H6)等可燃气体对空气中甲烷(CH4)爆炸极限和爆炸危险度(F值)的影响及双组份可燃气体爆炸界限和爆炸危险度的变化,采用空气中可燃气体爆炸极限测定方法完成一系列试验,测定加入不同体积分数其他可燃气体时CH4的爆炸极限。其他可燃气体的加入,均使空气中CH4和混合可燃气体的爆炸界限加宽;同时加大了CH4和混合可燃气体的爆炸危险度。试验结果表明:加入C2H4气体对CH4爆炸极限影响较大,使CH4及其双组份混合气体的爆炸危险度明显增大;加入量为2.0%时,CH4的F值增加了540%。而加入CO气体比加入C2H6,C2H4和H2等气体对CH4及混合气体的爆炸极限影响都小。  相似文献   

5.
为了探究高初始压力条件下空气泡沫驱井筒伴生气的燃爆特性,设计并搭建了高温高压可燃气体燃爆特性测试系统,对井筒伴生气的爆炸上限、下限以及临界氧体积分数等燃爆特性进行了测试。测量结果表明,随着初始温度和压力的升高,爆炸下限和临界氧体积分数降低,爆炸上限增加,伴生气的危险性增加。在0.5 MPa和10℃条件下伴生气的爆炸极限为2.01%~19.97%,而在15 MPa和80℃时爆炸极限迅速扩大至1.14%~56.67%。临界氧体积分数的测试结果从11.85%(0.5 MPa, 10℃)下降到8.91%(15 MPa, 80℃),最大差值为2.94%。根据试验结果拟合了临界氧体积分数的经验式,可快速评定不同初始条件下伴生气的安全氧含量。  相似文献   

6.
利用气体爆炸极限测试装置和卧式激波管系统,研究了抑爆剂CF_3I对R290爆炸极限、最小点火能、爆速以及爆压的影响。结果表明,添加CF_3I的R290爆炸概率和爆炸危害均明显降低。当CF_3I体积分数达到50%时,混合气爆炸区间缩小91.02%,最小点火能提高196倍,距爆心1.6 m处平均爆速降至3.52m/s,爆压下降37.12%。继续增加CF_3I体积比至VCF_3I/VR290≥1.2时,体系不具有爆炸性。  相似文献   

7.
为了探讨城镇燃气爆炸强度与反应初始温度的对应关系,根据工程热力学研究定组分混合气体的基本方法以及阿马格分体积定律将城镇燃气简化为含碳、氢、氧、氮的单一气体,简化其热化学反应方程式及反应终态温度的求解办法.在此基础上采用经典的气体爆炸强度公式计算不同反应初始温度下城镇燃气(体积分数10%)-空气混合气体理论上的最大爆炸压力和最大压力上升速率.结果表明,城镇燃气的最大爆炸压力及最大压力上升速率随初始温度的提高而线性减小,近似成反比例关系.为了验证理论计算所得结论的正确性,采用经典爆炸特性参数测试系统实测了该混合气体对应初始温度下的爆炸强度.实测结果与理论计算结果所得结论基本吻合,且最大爆炸压力的理论值与实测值最大误差为13.95%,最大爆炸压力上升速率的理论值与实测值最大误差为14.52%,满足工程应用(最大误差不超过20%)的需要.该理论计算方法可以近似估算不同初始温度下城镇燃气-空气混合气体的爆炸强度.在爆炸极限范围内城镇燃气的爆炸强度随反应初始温度的增加而线性减少,二者近似成反比例关系.  相似文献   

8.
为测定现场可燃混合气体的爆炸性,对比分析了国内外实验室爆炸极限的测定装置及爆炸性判定方法,设计研制了混合气体爆炸性现场测试装置。装置实现了爆炸性环境现场的自动采样、超高温点火、高速压力和温度测定及爆炸性自行判定。开展了丙烷、乙烯和液化石油气等典型可燃气体爆炸性实验,提出了基于压力和火焰温度变化相结合的气体爆炸性判定指标,改变了传统目测判定方式。研究结果表明:20 L球和1 L爆炸腔以爆炸压力提升来判定,比管式法测定的爆炸极限范围窄,以压力提升量5%~10%判定较适宜;1 L爆炸腔以爆炸过程温度提升量来判定,爆炸极限范围比以爆炸压力提升量判定宽,与目测观察的管式测定法相比,略宽于管式测定法和大部分文献数据。  相似文献   

9.
氢氧混合气体爆炸临界条件实验研究   总被引:2,自引:1,他引:1  
可燃气体的燃烧、爆炸是工业生产中常见的灾害性事故,危害极大.通过爆轰管实验装置,采用疏密分布的压力传感器测量氢氧混合气体的爆轰特性,并依据压力和波速在燃烧转爆轰瞬间发生突跃,判断混合气体爆炸的临界条件.实验结果表明,爆炸压力随氢气初始浓度呈∩形变化,50%氢气体积分数为爆炸最佳浓度值;在常温常压下,氢氧混合物爆炸的临界氢气体积分数是15%和90%;化学计量比的氢氧混合气体发生爆炸的临界初始压力为0.01 MPa;氮-氢-氧三元混合气体爆炸的临界氮气体积分数为60%.  相似文献   

10.
为了确定地层高温高压环境下油气混合气的安全氧含量,避免在采油过程中形成可燃性混合气体引发燃烧或者爆炸事故,保证注空气采油工艺过程的安全性,设计了1种测试地层高温高压环境下油气混合气体安全氧含量的实验装置;通过对采油现场井筒内的气体进行取样分析,选取一定组分的混合气体,在理论分析的基础上,对混合气体分别在1,5,10 MPa和40,120℃条件下的安全氧含量进行了实验研究,并将实验结果与理论分析结果进行了比较分析。研究结果表明:随着温度和压力的升高,安全氧含量逐渐降低;在地层高温高压环境下所测得的安全氧含量要远低于常温常压下的理论估算值;在10 MPa,120℃时达到8.27%,很大程度上增加了采油工艺过程的危险性。  相似文献   

11.
为了研究R290制冷剂惰化燃爆特性,采用带搅拌功能和氧浓度在线测定的20L球试验装置,对R290制冷剂进行了极限氧浓度测定。实验测定了丙烷在CO2和N2惰化气氛中的爆炸极限及极限空气浓度LAC,确定丙烷的极限氧浓度LOC;采用三元图爆炸区、丙烷-O2二维图爆炸区和ASTM标准分布图分析了混合气体爆炸区边界的燃爆特征,给出了极限氧浓度的确定方法和边界爆炸压力分布规律。实验结果表明:常温常压下R290的爆炸极限为2.1%~9.6%,CO2惰化气氛中的极限氧浓度为13.3%,对应的丙烷浓度为3.3%;N2惰化气氛中的极限氧浓度为10.8%,对应的丙烷浓度为2.7%。通过对比分析不同CO2和N2浓度下的爆炸区分布特征,表明CO2对丙烷的惰化效果要优于N2,以氮气和二氧化氮体积分数比为1∶2测试惰化气氛保护能力,惰化效果介于同浓度单种惰性气体之间。  相似文献   

12.
根据混合气的爆炸极限与混合气各成分的体积浓度之间具有非线性关系的特点,笔者提出采用神经网络非线性方法来计算含有H2,CH4和CO的多元混合气体的爆炸极限。在模型中,H2,CH4和CO的体积浓度作为输入,爆炸上限和下限作为输出。计算结果表明,该非线性模型预测混合气爆炸下限和上限的最大相对误差为3.90%,3.57%,而模型预测值与计算值的相关系数分别为0.971,0.981;非线性模型的预测结果要好于偏最小二乘回归的预测结果。当H2,CO,CH4在混合气中的体积浓度给定时,非线性模型能够准确预测混合气的爆炸极限。  相似文献   

13.
1.严格控制氧含量在对容器进行带压动火焊补之前。必须对容器内的气体成分进行分析。以保证其中氧的含量不超过安全值。所谓安全值就是在混合气中。当氧的含量低于某一极限值时,就不会形成达到爆炸极限混合气,也就不会发生爆炸。氧含量的这个安全值也称极限舍氧质量分数,通过控制这一指标,才能使补焊作业安全进行。例如,氢气的爆炸下限为4.0%,上限为75%。  相似文献   

14.
打火机生产企业工艺虽然简单 ,但其生产过程中使用的主要原材料丁烷气具有易燃易爆危险性 ,一是丁烷气体爆炸极限低 ,丁烷与空气混合浓度达到 1 9% ,(体积比 )遇火源即可发生爆燃。二是达到爆炸极限的丁烷混合气体遇到不足一毫焦耳的点火能量就会引起爆燃 ,这样的能量由摩擦、撞击、静电、非防爆开关电气等足以产生 ,更何况违章操作过程中产生的明火。打火机生产企业主要工艺是气体充装。按照生产企业火灾危险性分类标准应属甲类生产 ,按照气体爆炸危险场所的区域等级划分标准应属 1级区域 (指在正常情况下 ,爆炸性气体混合物有可能出现的场…  相似文献   

15.
为探索空气与甲烷气体混合物在流动状态下的爆炸特性,采用FRTA爆炸极限测试仪,对比研究甲烷在宏观静止状态和不同湍流强度下的爆炸极限。通过测试容器内置搅拌转子转速表征混合气体的湍流强度,并利用兰金组合涡模型分析混合气体爆炸极限与其湍流强度的关系。结果表明:宏观静止状态下甲烷爆炸范围为5.077%~15.433%;当搅拌子转速从0增大到1 200 rad/s时,甲烷爆炸下限上升为5.484%,爆炸上限降低为15.086%。  相似文献   

16.
为探讨升温煤体受限空间气体的变化规律,设计加工升温煤体引爆瓦斯试验平台,针对不同初始CH4体积分数开展受限空间煤体升温试验。利用Matlab计算试验数据,绘制O2,N2,CO,CH4,C2H4,C2H2的体积分数变化规律曲线。基于可燃性气体爆炸极限理论和计算公式,计算可燃性气体体积分数与混合气的爆炸上下限值,并绘制其关系图。结果显示,当温度为190~400℃时,受限空间气体将失去爆炸性。分析现场煤自燃引爆瓦斯的条件和形式,提出防治煤自燃引爆瓦斯的重点是防止煤柱、断层和高冒煤自燃升温到更高温度,尤其是要防止该区域提前氧化升温,同时要保持工作面风流稳定。  相似文献   

17.
为了预防化工场所合成氨工艺中混合气体爆炸事故,利用爆炸极限测试仪和CHEMKIN软件,研究了 NH3和CH4混合气体的爆炸极限和动力学过程.通过分析NH3和CH4混合气体的爆炸极限和爆炸传播火焰特征,以及爆炸过程中温度、压力和关键自由基·H和·OH的变化规律,探讨了不同体积分数的NH3对CH4爆炸极限的影响.结果表明:NH3的存在使混合气体的爆炸下限上升,在某种程度上抑制了 CH4爆炸,且体积分数越大,抑制作用越明显;爆炸下限时的火焰经历了半圆形向指尖形的转变,NH3体积分数越大,爆炸火焰颜色越亮;NH3主要通过影响CH4爆炸链式反应的关键自由基·H和·OH来抑制CH4爆炸.所得结论为有效预防NH3/CH4混合爆炸事故提供了理论依据.  相似文献   

18.
编辑同志:我们是一家化工生产企业,使用的原材料中,有可燃性混合气体与爆炸性混合气体。请问它们之间的燃烧反应速度的条件是什么?大连黄则培黄则培先生:您所问的是可燃性混合气体发生爆炸的问题。在工业生产和日常生活中,很多爆炸事故都是由可燃气体与空气混合形成爆炸性混合物引起的。一般来说,可燃性混合气体与爆炸性混合气体难以严格区分。  相似文献   

19.
针对挥发性有机物(Volatile Organic Compounds, VOCs)治理工程易发生的有机气体燃爆问题进行研究,以甲苯、环己烷2种典型VOCs气体为研究对象,研究其在不同条件下闪点、自燃点和爆炸下限的变化规律。结果表明,随混合样品中甲苯体积分数增加,混合蒸气的闪点由-17℃增加到9℃,自燃温度由264.1℃增加至515.9℃,爆炸下限由0.917%上升到1.252%。当混合样品中闪点、自燃温度和爆炸下限均较低的环己烷体积分数增大时,气体混合物的燃爆危险性相应增大。甲苯-环己烷混合样品(体积比为1∶1)的自燃点随质量浓度增加呈现先降低后上升的趋势,质量浓度为0.417 g/L时自燃温度最低,为461.82℃,混合样品在此质量浓度下最易发生自燃。当初始温度从65℃上升到165℃时,甲苯-环己烷混合蒸气(体积比为1∶1)爆炸下限降低,由1.310%降至0.980%,初始温度升高使混合气体爆炸的危险性增大。  相似文献   

20.
丙烯直接氨氧化制丙烯腈工艺由于反应温度高,且反应器内的气相空间存在丙烯、丙烷、丙烯腈、乙腈、氧气、氮气等可燃性气体混合物,极易发生燃爆危险。为研究和评估该工艺装置反应器尾气的燃爆特性,采用11 L爆轰管测试在400℃、40 k Pa (G)工艺条件下,装置开车进料及反应过程中不同进料配比时反应器尾气组成的爆炸极限,并以此绘制爆炸极限三元相图,最终得到爆炸极限和极限氧体积分数。结果表明:反应器内可燃尾气的爆炸上限随氧气体积分数增加而升高,爆炸下限没有明显变化;在开车进料及反应过程中,反应器可燃尾气的极限氧体积分数LOC范围在8. 0%~8. 5%。因此,为避免反应器气相空间在开车过程中发生燃爆危险,需监测反应器内氧气体积分数,并设置氧体积分数报警值小于8. 0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号