首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual cannibalism particularly before mating is costly for the male victim but also for the female aggressor if she risks remaining unmated. The aggressive spillover hypothesis explains the persistence of this behavior as a maladaptive side effect of positive selection on aggressiveness in a foraging context. The hypothesis predicts that the occurrence of sexual cannibalism is explained by female aggressiveness but is not related to male phenotype or behavioral type. An alternative hypothesis invokes sexual selection and makes the opposite prediction namely that sexual cannibalism is an expression of female choice and should hence mainly target males of low quality. We tested the above hypotheses on a sexually dimorphic nephilid spider Nephilengys livida, known for male monopolization of females via genital damage, female genital plugging, and mate guarding, by staging mating trials during which we recorded mating behaviors and occurrences of pre- and postcopulatory cannibalism. We did not restrict assessment of aggressiveness to the mating and foraging context but also included aggression against same sex conspecifics. To assess female personalities, i.e., consistent individual differences in behavior including aggressiveness, we repeatedly tested them for intra-sex aggression, voracity towards prey, locomotory activity, and boldness. Females exhibited consistent differences in intra-sex aggressiveness, latency to attack prey, and boldness. Aggressive females had shorter latencies to attack prey and were more active than non-aggressive ones. In contrast to the predictions of the aggressive spillover hypothesis, females that were aggressive towards prey and towards other females were not more likely to attack a male than non-aggressive females. In support of the mate choice hypothesis, less aggressive males were more likely attacked and cannibalized than more aggressive ones. This hints at sexual selection for aggressiveness in males and raises the question of mechanisms that maintain variation in male aggressiveness.  相似文献   

2.
Bird species are hypothesized to join mixed-species flocks (flocks hereon) either for direct foraging or anti-predation-related benefits. In this study, conducted in a tropical evergreen forest in the Western Ghats of India, we used intra-flock association patterns to generate a community-wide assessment of flocking benefits for different species. We assumed that individuals needed to be physically proximate to particular heterospecific individuals within flocks to obtain any direct foraging benefit (flushed prey, kleptoparasitism, copying foraging locations). Alternatively, for anti-predation benefits, physical proximity to particular heterospecifics is not required, i.e. just being in the flock vicinity can suffice. Therefore, we used choice of locations within flocks to infer whether individual species are obtaining direct foraging or anti-predation benefits. A small subset of the bird community (5/29 species), composed of all members of the sallying guild, showed non-random physical proximity to heterospecifics within flocks. All preferred associates were from non-sallying guilds, suggesting that the sallying species were likely obtaining direct foraging benefits either in the form of flushed or kleptoparasitized prey. The majority of the species (24/29) chose locations randomly with respect to heterospecifics within flocks and, thus, were likely obtaining antipredation benefits. In summary, our study indicates that direct foraging benefits are important for only a small proportion of species in flocks and that predation is likely to be the main driver of flocking for most participants. Our findings apart, our study provides methodological advances that might be useful in understanding asymmetric interactions in social groups of single and multiple species.  相似文献   

3.
Summary Feeding rates of five captive red crossbills (Loxia curvirostra) were measured when they were foraging alone, and in flocks of two or four on three seed dispersion patterns. On the most strongly clumped seed dispersion, individuals had higher mean feeding rates and the smallest probability of starvation when in flocks of two than when alone or in flocks of four. Individuals in flocks of four had higher feeding rates on the weakly clumped seed dispersion than on the uniform and more clumped seed dispersions; there were no food finding benefits gained from flocking on the uniform seed dispersion and aggression increased as food became more clumped. Most recent work has assumed that flocking results in higher feeding rates only because time spent vigilant is reduced. Crossbills, however, did not visit more cones per unit time as flock size increased, as would be expected if less time was spent vigilant. Thus, any reductions in vigilance as flock size increased were countered by increases in other behaviours, such as those related to aggression. Consequently, the higher mean feeding rates of crossbills in flocks than when solitary is not attributable to reduced vigilance. The increase in mean and the decline in variance of feeding rates occurred because crossbills in flocks found good patches earlier, and possible by spending less time assessing poor patches.  相似文献   

4.
Aposematic species advertise their unpalatability to potential predators using conspicuous warning colouration. The initial evolution of aposematism is thought to occur by warningly coloured mutants emerging in an already unpalatable cryptic species. However, possessing defence chemicals is often costly, and it is difficult to understand what the selective benefits might be for a mutation causing its bearer to be defended in a population of otherwise palatable cryptic prey. One solution to this problem is that chemically defended individuals are tasted and rejected by predators, and are, therefore, more likely to survive predatory attacks than undefended individuals. Using naïve domestic chicks Gallus gallus domesticus as predators and cryptic green chick crumbs as prey, we asked whether the accuracy with which birds discriminated between palatable and unpalatable prey was affected by the palatability of the unpalatable prey (moderately or highly defended), or their frequency in the population (10 or 25%). Birds could discriminate between green prey on the basis of their defences, and showed better discrimination between palatable and unpalatable prey when defended crumbs were highly unpalatable, compared to when they were moderately unpalatable. Although there was no detectable effect of the frequency of unpalatable prey in the population on predator taste-rejection behaviour in our main analysis, frequency did appear to affect the strategies that birds used in their foraging decisions when prey were only moderately unpalatable. How birds used taste to reject prey also suggests that birds may be able to monitor and regulate their chemical intake according to the frequency and defence levels of the unpalatable prey. Taken together, these results show that avian predators can generate selection for unpalatability in cryptic prey by sampling and taste-rejecting prey, but that a relatively large chemical difference between palatable and unpalatable prey may be necessary before unpalatable prey can enjoy a selective advantage. The exact nature of this evolutionary dynamic will depend on other environmental factors, such as defence costs and prey availability, but it provides a mechanism by which defences can evolve in a cryptic population.  相似文献   

5.
Summary Mixed species foraging flocks are a dominant component of the infra-structure of avian communities in neotropical forests. In Amazonia, these flocks consist of pairs of 10–20 species, many of which are permanently associated with mixed flocks. At least half of these flocking species maintain territories that correspond exactly to the flock home range. Small individuals that participate as permanent members of the flocks must adopt the large home range of the larger nucleus species. Therefore, the densities of smaller species are dependent on the availability and density of flocks rather than the availability of food resources. Single pairs of 4 small flocking species with individual body masses of 8 g occupied exclusive territories of 8–12 ha. These were the same exact territories that were defended by at least 6 other flocking species with individual body masses of up to 37 g. Because of their attachment to flocks with large territories, small species are expected to under-utilize available food resources. The under-utilization of food resources is expected to allow smaller species to coexist with greater niche overlap resulting in increased species richness. This hypothesis was tested by quantifying foraging niche in terms of foraging height, foraging maneuver, and prey substrate; and using these values in addition to body mass and bill size (length, depth and width) to determine relative niche overlap between large versus small species pairs.Smaller species had greater foraging overlap than large flocking species and particularly the three smallest species of the genus Myrmotherula; longipennis, axillaris and menetriesii had very high overlap (average foraging niche overlap for the 3 species=0.83±0.12 compared with 0.12±0.19 for all flocking species), similar body sizes (body masses differing by no more then 8%) and similar bill morphologies (maximum ratio in length=1.08, width=1.07, and depth=1.06). These results are consistent with the hypothesis that small species participating in Amazonian mixed flocks can coexist with greater niche overlap because their density is flock dependent rather than resource dependent.  相似文献   

6.
Mimicry of females enables weaker males in many species to avoid intrasexual aggression. In fiddler crabs (Uca annulipes), males use their major claw in aggressive interactions to acquire and defend a territory. Males that have autotomised their major claw will be disadvantaged in fighting, but might use their temporary resemblance to females to avoid costly aggressive encounters with other males. We investigated whether: (1) courting males mistake clawless male fiddler crabs for females; (2) clawless males are able to acquire, defend and retain territories as successfully as intact males; and (3) clawless males are more cautious than intact males. Clawless and intact males differed in burrow acquisition methods and fighting behaviour, but were equally successful at acquiring and retaining burrows. While courting males treated clawless males as female, we found no evidence that clawless males mimic the behaviour of females, or that they exploit the advantage of their mistaken identity. Clawless males further appear to avoid male aggression by altering their territorial strategies to minimise the potential for conflict.  相似文献   

7.
I quantified the costs of switching from a familiar to an unfamiliar flock for captive dark-eyed juncos (Junco h. hyemalis) by measuring several physiological and behavioral variables before and after flock switching. Birds that were initially dominant dropped in status in unfamiliar flocks, and experienced increased metabolic rates, while subordinate birds appeared to undergo less physiological change when switching flocks. This difference occurred despite a lack of any rank-related differences in the effects of joining a new flock on rates of aggression, weight change, access to food, or plasma corticosterone levels. These results suggest that for dominant, but not subordinate, individuals there is a measurable metabolic cost to joining a new social group, even in the absence of adverse factors such as food limitation. Dominant individuals may be less likely than subordinates to leave familiar flocks because of their higher metabolic costs when joining a new social group.  相似文献   

8.
Chemotactile cues unintentionally left by animals can play a major role in predator–prey interactions. Specialized predators can use them to find their prey, while prey individuals can assess predation risk. However, little is known to date about the importance of chemotactile cues for generalist predators such as ants. Here, we investigated the response of a generalized predatory ant, Formica polyctena, to cues of two taxonomically distinct prey: a spider (Pisaura mirabilis) and a cricket (Nemobius sylvestris). In analogy, we studied whether crickets and spiders showed antipredator behavior in response to ant cues. When confronted with cues of the two prey species, Formica polyctena workers showed increased residence time and reduced movement speed, which suggests success-motivated searching behavior and thus increased foraging effort. The ants’ response did not differ between cues of the two prey species, coinciding with similar aggression and consumption rates of dead prey. However, the cuticular hydrocarbons, which likely resemble part of the potential cues, differed strongly between the species, with only few methyl-branched alkanes in common. This suggests that ants respond to multiple compounds left by other organisms with prey-search behavior. The two prey species, in turn, showed no detectable antipredator behavior in response to ant cues. Our study shows that ants can detect and respond to chemotactile cues of taxonomically and ecologically distinct prey species, probably to raise their foraging success. Using such chemotactile cues for prey detection may drastically increase their foraging efficiency and thus contribute to the high ecological success of ants.  相似文献   

9.
Kinship and aggression: do house sparrows spare their relatives?   总被引:1,自引:0,他引:1  
Kin-selection theory predicts that relatedness may reduce the level of aggression among competing group members, leading to indirect fitness benefits for kin-favoring individuals. To test this hypothesis, we investigated whether relatedness affects aggressive behavior during social activities in captive house sparrow (Passer domesticus) flocks. We found that sparrows did not reduce their aggression towards kin, as neither the frequency nor the intensity of fights differed between close kin and unrelated flock-mates. Fighting success was also unrelated to kinship and the presence of relatives in the flock did not influence the birds’ dominance rank. These results suggest that the pay-offs of reduced aggression towards kin may be low in non-breeding flocks of sparrows, e.g. due to competition among relatives as predicted by a recent refinement of kin-selection theory. Our findings indicate that the significance of kin selection may be restricted in some social systems such as winter aggregations of birds. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
To compete for parental food deliveries nestling birds have evolved diverse behaviors such as begging displays and sibling aggression. Testosterone has been suggested to be an important mechanism orchestrating such competitive behaviors, but evidence is scarce and often indirect. Siblicidal species provide an interesting case in which a clear dominance hierarchy is established and the dominant chicks lethally attack siblings. We experimentally elevated testosterone in chicks of a facultatively siblicidal species, the black-legged kittiwake, Rissa tridactyla, and showed that testosterone-treated chicks were more aggressive toward their sibling than were control chicks. In such facultatively siblicidal species, chicks normally exhibit intense aggression only when threatened by starvation. Indeed, we found that chicks in relatively poorer condition were more aggressive than were chicks in better condition, even among testosterone-treated chicks, suggesting the action of an additional signal modulating aggression. Relatively larger siblings were also more aggressive than were relatively smaller siblings, confirming the importance of size advantage in determining dominance hierarchies within the brood. In addition, testosterone increased aggression toward a simulated predator, indicating that in kittiwakes testosterone can increase aggression in contexts other than siblicide. Testosterone promoted aggression-mediated dominance, which increased begging although testosterone treatment did not have a significant separate effect on begging. Therefore, testosterone production in the kittiwake and most likely other siblicidal species seems an important fitness mediator already early in life, outside the sexual context and not only manifesting itself in aggressive behavior but also in dominance-mediated effects on food solicitation displays toward parents.  相似文献   

11.
Mixed-species associations are a widespread phenomenon, comprising interacting heterospecific individuals which gain predator, foraging or social benefits. Avian flocks have traditionally been classified as monolithic species units, with species-wide functional roles, such as nuclear, active, passive, or follower. It has also been suggested that flocks are mutualistic interactions, where niches of participating species converge. However the species-level perspective has limited previous studies, because both interactions and benefits occur at the level of the individual. Social network analysis provides a set of tools for quantitative assessment of individual participation. We used mark-resighting methods to develop networks of nodes (colour-marked individuals) and edges (their interactions within flocks). We found that variation in flock participation across individuals within species, especially in the buff-rumped thornbill, encompassed virtually the entire range of variation across all individuals in the entire set of species. For example, female, but not male, buff-rumped thornbills had high network betweenness, indicating that they interact with multiple flocks, likely as part of a female-specific dispersal strategy. Finally, we provide new evidence that mixed-species flocking is mutualistic, by quantifying an active shift in individual foraging niches towards those of their individual associates, with implications for trade-off between costs and benefits to individuals derived from participating in mixed-species flocks. This study is, to our knowledge, the first instance of a heterospecific social network built on pairwise interactions.  相似文献   

12.
In siblicidal species, hatching asynchrony could act to reduce sibling rivalry or promote the death of last-hatched chicks. The pattern of hatching asynchrony was experimentally altered in the black kite Milvus migrans. Hatching asynchrony in control broods was intermediate between those of experimentally synchronised and asynchronised broods. Sibling aggression and wounds on the chicks were more commonly observed early in the nestling period and in synchronous nests. Serious injuries were observed on last-hatched chicks in asynchronous nests, as were observations of intimidated or crushed chicks. Sibling aggression was related to food abundance, but some chicks died at an early age in nests with abundant food (cainism). Cainism was more commonly found in asynchronous nests. For species with facultative siblicide, moderate hatching asynchrony could be a compromise between reducing sibling rivalry and avoiding large size differences between sibs that would result in cainism. Female black kites preferentially fed the smallest chicks and exhibited behaviours to reduce sibling aggression, contrary to observations in other siblicidal species. In a highly opportunistic forager such as the black kite, a strategy may exist to protract the life of all the chicks in the brood, waiting for unpredictable situations of food overabundance. This would induce the appearance of a parent-offspring conflict over brood reduction, reflected in the existence of a possible anticipated response by some of the chicks (cainism) and in the appearance of special behaviours by the parents to selectively feed smaller chicks or reduce sibling aggression. In this facultatively siblicidal species, cainism does not seem to be the final stage of an evolutionary trend favouring the raising of high-quality chicks, but a manifestation of a parent-offspring conflict over brood size. Received: 9 March 1998 / Accepted after revision: 8 August 1998  相似文献   

13.
Summary Results are presented from a 3.25-year study of a nesting pair of crowned hawk-eagles and an 18-year study of a primate community in the Kibale Forest, Uganda. The proportional composition of the living population of prey species was compared with that of eagle prey and animals dying from other causes. Monkeys were the predominant pry (83.7%). They also dominated the medium-to large-sized mammalian carcasses dying from other causes (88.9%). The eagles selected prey according to species, age, and sex. Selectivity by age and sex differed between prey species. Among red colobus monkeys, the eagles selected young juveniles and infants, but in four other monkey species they selected adult males. Eagle prey selectivity by species generally supports the hypothesis that polyspecific associations among the monkeys are effective deterrents against predation. The prey/predator ratio for the Kibale eagles was much higher, but the annual offtake of prey by the eagles was much lower than that of tropical felids. Mortality due to causes other than eagles was greater than expected in red colobus and less in redtails, but not significantly different from expected or equivocal in the other three monkey species. Other cause of mortality affected adult male and infant red colobus more than expected. Among the other four monkey species, significantly more adult males and fewer adult females died from these other causes than expected. Eagle predation had a major impact on the populations of adult males of both black and white colobus and blue monkeys and on both adult male and female mangabeys. The selectivity appeared to contribute significantly to the differential adult sex ratio in four monkey species, but not in red colobus. In contrast, mortality incurred during fighting among adult males probably accounted for the differential adult sex ratio in red colobus. Offprint requests to: T.T. Struhsaker at his current address  相似文献   

14.
Individual boldness affects interspecific interactions in sticklebacks   总被引:1,自引:1,他引:0  
Within populations of many species, individuals that are otherwise similar to one another in age, size or sex can differ markedly in behaviours such as resource use, risk taking and competitive ability. There has been much research into the implications of such variation for intraspecific interactions, yet little investigation into its role in influencing interspecific interactions outside of a predator–prey context. In this study, we investigated the role of individual-level behavioural variation in determining the outcomes of interactions between two ecologically similar fishes, the threespine and ninespine sticklebacks (Gasterosteus aculeatus and Pungitius pungitius). Experiment 1 asked whether individuals of both species were consistent in their expression of two behaviours: activity in novel surroundings and latency to attack prey. For each behaviour, focal individuals were assayed twice, 10 days apart. Performances were positively correlated between exposures, suggesting behavioural consistency within individuals, at least over this timescale. Experiment 2 revealed not only differences in habitat use described both by species-level variation, with ninespines spending more time in vegetated areas, but also by individual differences, with more active individuals of both species spending more time in open water than in vegetation. Experiment 3 revealed that when heterospecific pairs competed for prey, bolder individuals consumed a greater share, irrespective of species. These findings suggest that individual-level variation can facilitate overlap in habitat use between heterospecifics and also determine the outcomes of resource contests when they meet. We discuss how this might vary between populations as a function of prevailing selection pressures and suggest approaches for testing our predictions.  相似文献   

15.
Providing food to developing offspring is beneficial for offspring but costly for carers. Understanding patterns of provisioning thus yields important insights into how selection shapes (allo-) parental care strategies. Broadly, offspring development will be influenced by three components of provisioning (prey type, size and delivery rate). However, all three variables are rarely considered simultaneously, leading to suggestions that the results of many studies are misleading. Additionally, few studies have examined the provisioning strategies of breeders and non-breeding helpers in obligate cooperative breeders, wherein reproduction without help is typically unsuccessful. We investigated these components of provisioning in obligately cooperative chestnut-crowned babblers (Pomatostomus ruficeps). Prey type was associated with size, and delivery rate was the best predictor of the overall amount of food provided by carers. As broods aged, breeders and helpers similarly modified the relative proportion of different prey provided and increased both prey size and delivery rate. Breeding females contributed less prey than male breeders and adult helpers, and were the only carers to load-lighten by reducing their provisioning rates in the presence of additional carers. While our results suggest that breeders and helpers follow broadly comparable provisioning rules, they are also consistent with the idea that, in obligately cooperative species, breeding females benefit more from conserving resources for future reproduction than do helpers which have a low probability of breeding independently.  相似文献   

16.
Summary The value of being dominant in winter flocks of willow tits may not only be a matter of personal survival for males, although their survival probability was highest among flock members. Winter flocks of willow tits contain male-female subunits, and the dominant pair may be viewed as an alliance based on mutual benefits. Dominant males provide their mates with protection in winter, and females return the help in reproductive success. Survival was directly related to rank only within sexes. Mates of dominant males survived significantly better than low-ranked males even though these females were subordinate to these males in direct interactions. Mates of dominant males were relatively spared from costs of low rank as they were subject to aggression less often than expected. Presumably dominant males prevented such attacks, as they excluded other flock members from high tree sections where their mates fed. Males should gain from improving the survival probability of their mates since it was not always possible to replace lost mates in spring populations having a male-biased sex ratio. Dominance in avian winter flocks may thus have more indirect effects than merely to improve the personal survival probability through resource priority. The benefits of being a dominant suggest that subordinate willow tits join groups because there is no space available for them to take up a territory as dominants.  相似文献   

17.
Comparative feeding ecology of felids in a neotropical rainforest   总被引:5,自引:0,他引:5  
Summary Diet and habitat use of jaguar, puma, and ocelot, and populations of their mammalian prey, were studied in an undisturbed rainforest in southeastern Peru. Analysis of scats (feces) showed terrestrial mammals to be the chief prey of all three felids, but reptiles and birds were also numerically important in the diets of ocelot and jaguar. Prey diversity is high and the cats evidently take any readily captured vertebrate. For major terrestrial mammal prey of felids, density, biomass, prey/predator ratios, and annual offtake from the study area are estimated. All three cat species seem to hunt by opportunistic encounter of prey. Most mammalian prey species were taken in about the ratios of occurrence, but peccaries were taken by jaguar more often than expected. Most prey of jaguar have a body weight of >1 kg, those of ocelot, 1 kg. Jaguar often used waterside habitats, where they captured caiman and river turtles. Puma did not use these habitats or resources, although the puma prey sample was too small for much inference. The possible effects of felids on study area prey populations are discussed. Large and small cats partition prey at the body weight region where prey switches from low to high reproductive rates.  相似文献   

18.
Rudolf VH 《Ecology》2008,89(6):1650-1660
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.  相似文献   

19.
Competition between males is a key component of the agonistic intrasexual interactions that influence resource acquisition, social system dynamics, and ultimately reproductive success. Sexual selection theory predicts that traits that enhance success in intrasexual competition (particularly male–male competition) should be favored. In vertebrates, this often includes body size and aggression, with larger and/or more aggressive males outcompeting smaller or less aggressive conspecifics. The majority of studies consider aggression as a flexible trait which responds to local social or environmental conditions. However, aggression frequently shows considerable within-individual consistency (i.e., individuals have identifiable aggressive behavioral types). Little is known about how such consistency in aggression may influence competition outcomes. We integrated a detailed field study with a laboratory experiment to examine how a male’s aggressive phenotype and his size influence competitive interactions in Egernia whitii, a social lizard species which exhibits strong competition over resources (limited permanent shelter sites and basking sites). Individual aggression and size did not predict competition outcome in the laboratory nor did they predict home range size, overlap, or reproductive success in the field. However, winners of laboratory trial contests maintained consistent aggressive phenotypes while consistency in aggression was lost in losers. We suggest that aggression may be important in other functional contexts, such as parental care, and that alternative traits, such as fighting experience, may be important in determining competition outcome in this species.  相似文献   

20.
Summary Life histories of rhesus monkey mothers (Macaca mulatta) were classified in terms of (1) whether the mothers were top ranking or not, (2) gave birth to more daughters than sons or vice versa, and (3) gave birth at intervals of one year or of more than a year. Bearing daughters at intervals of more than a year was the most common history among top ranking mothers, while bearing sons annually was most common among other mothers. The consequences for the infants and mothers of such histories were examined and (1) infants were more likely to die as neonates if they had an older sister, especially if the sister had been born in the previous birth season; (2) dyads with daughters received more aggression from other adults in the daughter's first year, but not necessarily through the year following the birth of the next infant (3) when mothers of daughters gave birth of the next infant after at least one fallow year, their daughters directed considerable amounts of harassing aggression to their next-born sibling; and (4) mothers of sons but not of daughters delayed longer when they received more aggression from other adults.We discuss the views that birth sex ratios may be affected by a mother's rank rather than how often she is involved in aggressive encounters with other adults; and that in top-ranking mothers, birth intervals may be controlled more by the infant's sex than aggression the family received. Fitting the data into a life history strategy model is done as a provisional and speculative exercise  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号