首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热失控是锂离子电池最严重的安全问题,一旦发生,极易在电池模组内传播,其释放的热量成倍增长后会导致严重的燃烧爆炸事故,严重阻碍了其在储能、电动汽车等行业的应用,因此需要可靠的方法来阻隔热失控在电池间的传播。目前主流的散热与隔热两种热失控抑制策略都存在不足,细水雾因其出色的冷却能力被首选为散热介质,因此有必要开展细水雾散热与隔热层隔热对电池模组内灾害传播协同抑制的有效性研究。以4块车用7 Ah方型动力三元锂离子电池为研究对象,对比分析了隔热层隔热、细水雾散热及其协同抑制三种策略对热失控传播抑制中的关键参数变化。结果表明:本实验中单纯的隔热或细水雾散热方法均无法完全阻断热失控蔓延,但协同抑制策略不仅能完全有效阻断,还可有效解决隔热板导致的聚热现象与细水雾冷却速率有限的问题,相邻电池的最高温度及最大温升速率控制在了132.4℃、0.35℃/s以下;同时,有毒气体CO、SO2的浓度相比无抑制时分别下降约21%、30%。协同抑制的综合效果大于两者单独作用之和,本研究可为电池包内合理平衡隔热和散热之间的关系设计提供数据参考。  相似文献   

2.
为抑制锂离子电池模组的热失控传播,构建液氮(LN)对热失控的抑制试验系统,揭示在外部加热和过充条件下,LN对锂离子电池模组热失控传播的抑制作用。结果表明:外部加热条件下,热失控自紧贴加热板的电池向两侧传播,共6块热失控电池;同条件下,注氮后热失控电池温度降低超过100℃,峰值温度降低70℃以上,LN冷却效率为42.9%,有效利用率为4.1%,热失控剧烈程度降低,传播被阻断;改变加热板位置使LN不直接接触热失控电池时,LN的冷却效率为18.3%,有效利用率仅为2.1%,远低于接触组,且热失控电池回温至207℃,LN不能终止电池热失控进程,LN直接接触热失控电池时达到最佳抑制效果。过充条件下,电池模组内共7块热失控电池,峰值温度均超过345℃;注氮组无热失控电池,电池峰值温度为127.4℃,LN冷却效率为41.7%,在电池模组压降时注氮可防止热失控发生。  相似文献   

3.
为了研究不同特性参数细水雾抑制锂电池组火灾的效果,利用计算流体动力学模型和火灾动力学模拟程序对不同特性参数细水雾灭火效果进行了分析.采用锥形量热仪在50 kW/m2辐射热条件下和100%荷电状态下对锂离子电池进行燃烧试验,获取其热释放速率曲线,热释放速率峰值为9.23 kW.在试验获得参数的基础上以6个18650型锂电池建立火灾模型,利用火灾场模拟软件FDS对不同雾滴直径、雾动量和喷雾强度的细水雾的灭火过程进行数值模拟.定量分析熄灭锂离子电池火的细水雾相对适宜的条件范围,研究细水雾的特性参数对锂离子电池组灭火效果的影响.结果表明:在细水雾雾滴动能不变的情况下,随细水雾雾滴粒径增大,灭火时间先波动后增大,在细水雾粒径为50~100μm的工况下系统抑制锂离子电池火效果最佳,灭火时间最短,耗水量最少;水雾动量变化在一定区间内增加对锂电池灭火有增强效果,当雾滴速度足以穿越火焰时,增加水雾动量对灭火效果影响不大;在规定范围内喷雾强度越大,细水雾能够气化的数量越多,吸收的热量也越多,越有利于灭锂离子电池火灾.  相似文献   

4.
张青松  曹文杰  白伟 《火灾科学》2017,26(4):239-243
为研究细水雾对锂离子电池热失控的抑制作用,利用自设计细水雾实验装置对18650型锂离子电池热失控进行抑制实验,对比两节电池依次燃爆和不同阶段使用细水雾的温度曲线。研究表明,细水雾对于抑制锂离子电池热失控有效,但不同热失控阶段细水雾抑温效果差异较大,结合锂离子电池多米诺效应和机载灭火设备适航性要求,应尽可能将细水雾喷雾时间节点靠近初次爆炸的时间节点。提出通过准确探测初次爆炸发生和进一步增强细水雾抑制作用来控制锂离子电池热失控及多米诺效应的发生和传播。  相似文献   

5.
为了提升动力锂离子电池系统的安全性,除了一些常规保护措施(电池冷却、电量监测、过热报警等)外,增加抑制锂离子电池早期热失控及火灾的防护系统也是必要的。针对某型电动客车锂离子电池箱的50 Ah三元锂离子电池,开展了锂离子电池单体火灾试验、锂离子电池箱火灾抑制试验及锂离子电池早期热失控抑制试验,验证低压细水雾灭火系统对于锂离子电池箱热失控安全防护的效果。结果表明,该类型三元锂离子在800 W功率的加热下,会瞬间发生爆燃,燃烧时间为69 s。低压细水雾系统成功实现了对动力锂离子电池箱内火灾及单颗锂离子电池早期热失控的抑制。在锂离子电池火灾及早期热失控抑制的过程中,均未观察到复燃及模组间热失控的传播。  相似文献   

6.
由雾滴的表面的组分方程和能量方程入手,探讨雾滴在静止的高温环境中的热质交换及生存时间。应用折算薄膜理论,通过特征时间的比较,提出雾滴与高温环境主要通过沸腾机制实现热质交换;考虑滴径与速度变化的耦合作用,应用数值方法研究雾滴在强迫对流环境中与高温环境的热质交换情况。结果表明:对于滴径较小的雾滴不可能达到火焰区或可燃物表面实施火焰冷却和表面冷却,其灭火作用主要依赖于汽化吸热。  相似文献   

7.
为研究锂离子电池热失控过程中的相关特性,在细水雾基础上加入惰性气体进行抑制锂离子电池火灾试验。选取荷电状态为0%、50%、100%的磷酸铁锂电池分别在空气、N_2、CO_2气体环境中研究热失控特性;在热失控研究基础上,利用细水雾喷射装置开展锂离子电池热失控灭火试验,对比分析锂离子电池热失控爆发时间、温度变化、灭火时间等参数。结果表明:锂离子电池热失控经历鼓包破阀、初期喷火、稳定燃烧、火焰衰减、火焰熄灭、火焰复燃阶段; N_2、CO_2均能降低锂离子电池燃烧温度,减弱爆炸强度,CO_2与纯水细水雾抑制锂离子电池燃烧效果优于N_2与纯水细水雾,证明惰性气体与细水雾对锂离子电池火灾的协同抑制作用。  相似文献   

8.
为研究锂电池在民航飞行低压特殊环境的安全性及发生热失控灾害后的高温危险性,通过可模拟飞行变动条件的动压变温实验舱开展系列实验,研究锂电池在不同低压环境下的(101,60,30 kPa)多节18650型锂离子电池热失控温度特性,采集电池池体温度及热失控喷射释放温度等参数。研究结果表明:随环境压力降低,圆柱锂电池间的热失控传播并不能被阻断,但锂电池热失控灾害所释放产生的高温区域减少,且高温持续时间变短,释放所产生温度的高温危险性随环境压力的降低而有所降低。  相似文献   

9.
为探索针对磷酸铁锂电池组热失控行为的高效灭火剂,搭建锂电池燃烧-抑制试验平台,选取27 Ah磷酸铁锂电池组,以300 W外部热源过热诱发电池热失控至起火。在水阻断磷酸铁锂电池热失控行为试验基础上,开展水凝胶灭火剂对磷酸铁锂电池组热失控行为阻断效果试验研究,对比分析锂离子电池组热失控爆发时间、温度变化速率等参数。结果表明:水对锂电池组冷却深度不足且利用率不高,无法有效阻断电池组间热失控传播。水凝胶灭火剂可快速扑灭明火,结束喷放后电池表面温度始终低于热失控临界温度,可有效阻断电池组热失控行为。灭火剂喷放速率越大,阻止电池组热失控传播越明显,大流量的水凝胶灭火剂可完全阻止热失控在电池组单体间传播。  相似文献   

10.
为有效控制高能量密度锂离子电池(LIBs)热失控扩展,提出一种复合阻隔技术。以软包镍钴锰(NCM) 811型(NCM811)电池为研究对象,分析现有锂离子电池热失控火灾防控方法及NCM811电池热失控特性,通过加热方式进行电池热失控特性试验,以确定表面温度和热失控触发时间之间的影响关系;通过以气凝胶、石棉、岩棉为代表的不同微结构尺寸材料的热阻隔试验,确定微结构尺寸与热阻隔特性的关系;通过不同厚度、层数的热阻隔试验,研究不同阻隔方案的热阻隔特性。研究表明:在进行毫米厚度级别的热阻隔时,阻隔板材料微结构尺寸越小(小于空气分子平均自由程70 nm),阻隔板越薄、层数越多,热阻隔效果越好。  相似文献   

11.
为解决与锂离子电池热失控有关的空运安全问题,利用自主设计的锂电池火灾试验平台,对不同包装、数量及荷电状态(SOC)的18650型锂离子电池开展燃爆试验研究。观察锂离子电池热失控现象,进行阶段划分,研究锂离子电池热失控传播过程;记录不同条件下锂离子电池初爆响应时间、燃爆峰值温度及峰值温度持续时间,考察不同包装、数量及SOC对锂离子电池空运安全的影响。结果表明:锂离子电池燃烧可分为初爆和燃爆2个阶段,一节电池热失控可形成连锁燃烧反应;电池热稳定性随SOC增大而显著降低;空运电池数量严重影响空运安全;用瓦楞纸包装时,燃爆峰值温度高达820℃,不能提高锂离子电池安全性。  相似文献   

12.
采用ANSYS对高温条件下铜棒代替锂离子电池的空白试验进行数值模拟,获得拟合的陶瓷化纤棉毯的比热容;然后对18650型锂离子电池的热响应进行模拟,通过模拟结果与试验数据的比较分析,获得锂离子电池内部的反应放热量;最后应用得出的陶瓷化纤棉毯比热容和化学反应热对高温环境下18650型锂离子电池的热失控进行模拟,研究18650型锂离子电池热失控的变化规律.结果表明:20W加热条件下,锂离子电池的放热反应热为30 kJ;锂离子电池在加热1 287 s后发生热失控,热失控持续113 s后锂离子电池温度达最高,之后开始缓慢减小;锂离子电池热失控温度为500 K,热失控前温度几乎是线性增加,之后热失控导致温度迅速增加(呈指数倍增长);锂离子电池保温材料陶瓷化纤棉毯的温度变化是非线性的.  相似文献   

13.
为研究细水雾灭火系统对18650型锂电池热失控的抑制效果,利用自设计实验平台进行抑爆实验,对比初爆与燃爆两个关键点及有无外部热源的温度变化图。研究表明,细水雾能够明显抑制18650型锂电池热失控,但施加细水雾的时间点对抑制效果影响较大,初爆后施加细水雾能够有效抑制,在燃爆后施加细水雾10s内温度降低200℃以上,但由于锂电池内部电解液复燃的特点,温度回升。温升速率的变化使得电池初爆的时间和温度分别提前了67.4%和44.4%,据此提出通过探测18650型锂电池初爆释放气体发现热失控发生并在最短时间内移除异常行为电池来控制电池热失控及其热量的异常传播。  相似文献   

14.
为探究不同外热部位对18650型锂离子电池热失控特性的影响,通过自主设计的试验平台对电荷量为100%的18650型锂离子电池开展不同外热部位下热失控试验,探讨不同部位外热源对电池热失控行为过程、热失控响应时间、温度特性、电池破裂部位的影响。结果表明:在相同热源功率条件下,外热源位置对电池热失控过程中初爆与二次燃爆间的时间间隔存在影响,顶部加热时安全阀打开瞬间便发生二次燃爆,底部和中部加热工况下,时间间隔分别延迟至18 s和40 s;中部加热时池体温升速率最慢,为0.873℃/s,分别为顶部和底部加热时的77.5%和77.8%;中部加热时热失控响应时间最长达290 s,顶部和底部加热时分别缩短12.4%和30.0%;顶部和底部加热时,热失控破裂部位集中于顶部"褶皱处"和底部防爆阀,但在中部加热工况下,电池发生破裂部位的随机性增加,其外壳破坏程度也有增加。  相似文献   

15.
刘全义  韩旭  孙中正  吕志豪 《安全》2019,40(4):42-46
针对锂离子电池热失控引发的航空运输安全问题,自主设计并搭建锂离子电池热失控灾害演化及危险性分析实验平台。在敞开和密封环境体系下,对电加热触发荷电量(State of Charge,SOC)为0%、50%和100%的18650型锂离子电池热失控规律进行了实验研究。观察单体锂离子电池在敞开和密封体系中的热失控现象,并记录单体锂离子电池热失控时间、温度峰值及相应的温度变化。数据结果显示,相比敞开体系,密封体系有效的延缓了锂离子电池发生热失控的时间,并降低了锂离子热失控时释放的能量,为锂离子电池的航空运输安全性研究提供了理论依据和工程技术参考。  相似文献   

16.
为定量研究锂离子电池热失控的危险性,利用锂离子电池在滥用条件下释放气体的种类及体积分数,计算锂离子电池热解气体爆炸极限并研究锂电池荷电状态对热解气体爆炸极限的影响。结果表明:在一定热失控条件下锂离子电池荷电状态为100%时其热解气爆炸下限为6.22%,上限为38.4%,在相同热失控条件下,锂离子电池热解气体的爆炸极限范围随着荷电状态的升高而增大,锂电池的荷电状态对热解气体的爆炸上限影响较大而对爆炸下限影响较小。在相似条件下,锂离子电池热解气体的爆炸极限范围比普通烃类气体大,一旦锂电池发生热失控会对锂离子电池运输造成潜在威胁。  相似文献   

17.
针对目前频发的锂离子电池热失控事故,自主设计并搭建了圆柱形锂离子电池热失控实验平台,对不同加热功率触发的锂离子电池热失控过程进行了实验研究。数据结果表明,外在热源功率对锂离子电池热失控行为影响很大。锂离子电池热失控过程中响应温度随加热棒功率的升高而降低,而最高温度随加热棒功率的升高而升高。通过对不同加热功率触发锂离子电池热失控特性的研究,可为锂离子电池的储存和运输安全性研究提供理论依据和工程技术参考。  相似文献   

18.
为研究21700和18650新旧2型多用途锂离子电池在航空运输低压环境下的热失控特性差异,采用动压变温实验舱搭建实验平台开展实验。将实验环境压力设定为飞机巡航时的环境压力30 kPa,对比常压101 kPa,使用外部热源加热的方式触发锂电池热失控,利用热传播引发相邻电池热失控,分别从热失控温度变化特性、热释放速率和热解气体组分浓度变化进行分析。研究结果表明:能量密度更高的21700电池热失控峰值温度更高,高温危险性要高于18650电池,但触发热失控所需的热量更多,电池间热传播时间会延长;低压环境有利于降低锂电池热失控燃爆峰值温度,减小燃爆热释放速率,但会产生更多CxHy和CO等具有燃爆性的热解气体,可能会在有限空间内与氧气混合引起二次燃爆。  相似文献   

19.
为系统了解锂电池火灾灭火技术研究现状,综述国内外针对锂电池火灾的灭火实验研究,基于锂电池火灾的特点,从灭火效果、冷却效果和毒性危害等方面分析各类灭火剂对锂电池火灾的适用性,指出目前研究存在的问题以及今后的研究重点。研究结果表明:灭火剂的冷却能力是抑制锂电池内部链式分解反应,进而阻止锂电池复燃和热失控传播的关键因素。未来研究应更贴近实际工程应用,从灭火效率、冷却能力、毒性影响和有无不良抑制作用等角度综合评估灭火剂的有效性。  相似文献   

20.
为研究三元锂离子电池在空运低压环境中的安全性,通过自主设计搭建的封闭式变压实验舱开展相关实验,对不同荷电状态(SOC)下的三元锂离子电池在不同压力环境(101,80,60,40 kPa)下的热失控特性进行研究,采集电池热失控过程中的温度以及实验舱内的压力变化,并对热失控后实验舱内的气体成分进行分析。结果表明:三元锂离子电池热稳定性随着SOC的升高而下降,常压下100%SOC的电池热失控温度可达650.8 ℃,初始环境压力越低,相同SOC的电池热失控最高温度越低。随着环境压力的降低,相同SOC的电池在热失控后会生成更多CO,且电解液占比升高。研究结果可为锂离子电池空运安全性研究提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号