首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seventeen polycyclic aromatic hydrocarbons (PAHs) were studied in surface waters (including particulate phase) from the Chenab River, Pakistan and ranged from 289-994 and 437-1290 ng l(-1) in summer and winter (2007-09), respectively. Concentrations for different ring-number PAHs followed the trend: 3-rings > 2-rings > 4-rings > 5-rings > 6-rings. The possible sources of PAHs are identified by calculating the indicative ratios; appropriating petrogenic sources of PAHs in urban and sub-urban regions with pyrogenic sources in agricultural region. Factor analysis based on principal component analysis identified the origins of PAHs from industrial activities, coal and trash burning in agricultural areas and municipal waste disposal from surrounding urban and sub-urban areas via open drains into the riverine ecosystem. Water quality guidelines and toxic equivalent factors highlighted the potential risk of low molecular weight PAHs to the aquatic life of the Chenab River. The flux estimated for PAHs contaminants from the Chenab River to the Indus River was >50 tons/year.  相似文献   

2.
The objectives of this study were to investigate the levels, dispersion patterns, seasonal variation, and sources of 16 priority polycyclic aromatic hydrocarbons (16 EPA-PAHs) in the Hun River of Liaoning Province, China. Samples of surface water were collected from upstream to downstream locations, and also from the main tributaries of the Hun River in dry period, flood period, and level period, respectively. After appropriate preparation, all samples were analyzed for 16 EPA-PAHs. Total PAHs concentrations varied from 124.55 to 439.27 ng l?1 in surface water in dry period, 1,615.75 to 5,270.04 ng l?1 in flood period, and 2,247.42 to 7,767.9 ng l?1 in level period. The 16 EPA-PAHs concentrations were significantly increased in the order of level period > flood period > dry period. The composition pattern of PAHs in surface water was dominated by low molecular weight PAHs, in particular two- to three-ring PAHs. In addition, two-ring PAH accounted for 39.33 to 88.27 % of the total PAHs in level period. Low molecular weight PAHs predomination together with higher levels of PAHs in flood and level period suggested a relatively recent local source of PAHs. Special PAHs ratios such as phenanthrene/anthracene and fluoranthene/pyrene indicated that under dry weather season conditions, the PAHs found in surface water were primarily from petrogenic source, while under wet weather season conditions they were from mixed source of both petrogenic inputs and combustion sources. The comparison of PAHs contamination among different types of areas in China suggested that atmospheric depositions might be the most important approaches of PAHs into water system. Although the Hun River exists low PAHs ecological risk now, potential toxic effects will be existed in the future especially in flood and level period.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

4.
The current research aims at developing predictive models for trihalomethane (THM) formation in Lebanon based on field-scale investigations as well as laboratory controlled experimentations. Statistical analysis on field data revealed significant correlations for TTHM with chlorine dose, Specific UV-A, and UV(254) absorbing organics. Simulated distribution system-THM tests showed significant correlations with applied chlorine dose, total organic carbon, bromides, contact time, and temperature. Predictive models, formulated using multiple regression approaches, exhibiting the highest coefficients of determination were quadratic for the directly after chlorination (DAC; r(2) = 0.39, p < 0.036) and network (r(2) = 0.33, p < 0.064) THM databases, and logarithmic for the laboratory simulated THM database (r(2) = 0.70, p < 0.001). Computed r(2) values implied low correlations for the DAC and network THM database, and high correlation for the laboratory simulated THM database. Significance of the models were at the 0.05 level for DAC database, 0.10 level for the network database, and very high (<0.01 level) for the laboratory simulated THM database. It is noteworthy to mention that no previous attempts to assess, monitor, and predict THM concentrations in public drinking water have been reported for the country although a large fraction of the population consumes chlorinated public drinking water.  相似文献   

5.
A field campaign was conducted to measure and analyze 13 polycyclic aromatic hydrocarbons (PAHs) in six major zones in the city of Shanghai, P.R. China from August 2006 to April 2007. Ambient air samples were collected seasonally using passive air samplers, and gas chromatography–mass spectroscopy was used in this field campaign. The results showed that there was a sequence of 13 PAHs at Phen > FA > Pyr > Chr > Fl > An > BaA > BbFA > BghiP > IcdP > BkFA > BaP > DahA and the sum of these PAHs is 36.01 ± 10.85 ng/m3 in gas phase. FL, Phen, FA, Pyr, and Chr were the dominant PAHs in gas phase in the city. They contributed 90% of total PAHs in the gas phase. Proportion of measured PAHs with three, four, five, and six rings to total PAHs was 53%, 42%, 3%, and 2%, respectively. The highest concentration of ΣPAHs (the sum of 13 PAHs) occurred in the wintertime and the lowest was in the summer. This investigation suggested that traffic, wood combustion, and metal scrap burn emissions were dominant sources of the concentrations of PAHs in six city zones compared with coal burning and industry emissions. Further, the traffic emission sources of PAHs in the city were attributed mostly to gasoline-powered vehicles compared with diesel-powered vehicles. It was revealed that the seasonal changes in PAHs in the city depended on different source types. Metal scrap burn was found to be the major source of PAHs during the autumn, while the PAH levels in the atmosphere for winter and spring seasons were mainly influenced by wood and biomass combustion. Comparisons of PAHs among different city zones and with several other cities worldwide were also made and discussed.  相似文献   

6.
Air pollution is one of the major environmental problems in India, affecting health of thousands of 'urban' residents residing in mega cities. The need of the day is to evolve an 'effective' and 'efficient' air quality management plan (AQMP) encompassing the essential 'key players' and 'stakeholders.' This paper describes the formulation of an AQMP for mega cities like Delhi in India taking into account the aforementioned key 'inputs.' The AQMP formulation methodology is based on past studies of Longhurst et al., (Atmospheric Environment, 30, 3975-3985, 1996); Longhurst & Elsom, ((1997). Air Pollution-II, Vol. 2 (pp. 525-532)) and Beatti et al., (Atmospheric Environment, 35, 1479-1490, 2001). Further, the vulnerability analysis (VA) has been carried out to evaluate the stresses due to air pollution in the study area. The VA has given the vulnerability index (VI) of 'medium to high' and 'low' at urban roadways/intersections and residential areas, respectively.  相似文献   

7.
The distribution of 11 individual polycyclic aromatic hydrocarbons (PAHs) was analysed in a (210)Pb dated sediment core from the deepest area of Lake Peipsi and in four surface sediment samples taken from littoral areas. According to the concentrations in the core three groups of PAHs may be distinguished: (1) relatively stable concentrations of PAHs within the whole studied time interval; (2) very low concentrations in sediments accumulated before intensive anthropogenic impact (from 19th century up to the 1920s) following a slight increase and (3) an overall increase in PAH concentrations since the 1920s up to the present. Comprehensive analysis of PAHs in the core and monitoring data obtained in the 1980s together with the lithology of sediments show that an increase of anthropogenically induced PAHs correlates well with the history of fuel consumption in Estonia and speaks about atmospheric long-distance transport of PAHs. The continuous increase of PAH concentrations since the 1920s do not support the earlier hypothesis about the dominating impact of the oil shale fired power plants near the lake, because their emissions decreased significantly in the 1990s. The concentration of PAHs in the deep lake core sample correlates well with the content of organic matter, indicating absorption and co-precipitation with plankton in the sediment.  相似文献   

8.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in Densu River Basin in Ghana were measured using gas chromatograph. Surface water samples were collected from nine stations, namely, Potroase, Koforidua Intake, Suhyien, Mangoase, Asuboi, Nsawam Bridge, Afuaman, Ashalaga, and Weija Intake in the Densu Basin. Total PAH concentrations varied from 13.0 to 80.0 ??g/mL in the Densu River, with a mean value of 37.1 ??g/mL. The two- to three-ring PAHs (low-molecular-weight PAHs) were found to be dominant in the Densu River Basin. Total PAH concentrations showed the following pattern: Koforidua Intake (80.0 ??g/mL) > Asuboi (50.8 ??g/mL) > Afuaman (47.9 ??g/mL) > Weija Intake (45.0 ??g/mL) > Suhyien (27.6 ??g/mL) > Nsawam (23.5 ??g/mL) > Ashalaja (22.9 ??g/mL) > Potroase (23.3 ??g/mL) > Mangoase (13.0 ??g/mL). According to the Agency for Toxic Substances and Disease Registry (ATSDR), background levels of PAHs in drinking water supplies in the USA range from 0.004 to 0.024 ??g/mL. PAH levels from all sites exceeded the range set by ATSDR. B[a]P contributed the highest carcinogenic exposure equivalent (0.3 ??g/mL), followed by B[a]A (0.132 ??g/mL) and B[b]F (0.08 ??g/mL), contributing 52.6%, 23.2%, and 4.6%, respectively, of the total carcinogenicity of surface water PAH in the Densu River Basin. The carcinogenic potency was estimated to be 0.57 ??g/mL. The presence of PAHs was an indication of the water sources being contaminated, with potential health implications.  相似文献   

9.
The accelerated industrialization and urbanization in the last three decades around the Pearl River Delta within Guangdong Province in China have led to serious concerns about the impacts on the aquatic environment. In the present study, the genotoxicity of the sediments collected from the Pearl River was evaluated by micronucleus (MN) assay with Vicia faba root tip cells, and the 16 EPA priority polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs, including Cr, Cu, As, Se, Cd, Hg, and Pb) in the sediments were determined respectively by GC-MS, inductively coupled plasma mass spectrometry, and inductively coupled plasma atomic emission spectrometry. The results showed that there were significant increases of MN frequencies observed in the sediment-exposed groups, compared with the negative group (P?相似文献   

10.
To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments from the Bizerte Lagoon (northern Tunisia), 18 surface sediment samples were collected in March 2011 and analyzed for 14 US Environmental Protection Agency priority PAHs by high-performance liquid chromatography. The total concentrations of the 14 PAHs (ΣPAHs) ranged from 16.9 to 394.1 ng g?1 dry weight (dw) with a mean concentration of 85.5 ng g?1 dw. Compared with other lagoons, coasts, and bays in the world, the concentrations of PAHs in surface sediments of the Bizerte Lagoon are low to moderate. The PAHs’ composition pattern was dominated by the presence of four-ring PAHs (45.8 %) followed by five-ring (26.8 %) and three-ring PAHs (12.7 %). The PAH source analysis suggested that the main origin of PAHs in the sediments of the lagoon was mainly from pyrolytic sources. According to the numerical effect-based sediment quality guidelines of the USA, the levels of PAHs in the Bizerte Lagoon should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent values calculated for the samples varied from 3.1 to 53.7 ng g?1 dw with an average of 10.6 ng g?1 dw.  相似文献   

11.
Polycyclic aromatic hydrocarbon (PAH) analyses of surface sediments from the Cross River estuary by gas chromatography–mass spectrometry indicated natural diagenetically derived PAHs in the upper estuary, with minor and variable amounts of petrogenic and combustion-derived PAHs from human activities (lower estuary). The occurrence of significant amounts of perylene (average 23% of all PAHs) with the diagenetic natural PAHs in the middle estuary bordered by mangrove forests supports its origin from terrestrial organic matter. The natural PAHs represent the highest percentage (average 76%) of the total PAHs in this tropical environment. The traditional geochemical parameters, including the petrogenic PAHs, confirmed trace petroleum contamination in the estuary. Specific PAH ratios such as Fl/Py and Fl/(Fl+Py) also support this source contribution.  相似文献   

12.
Spatial and seasonal distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US Environmental Protection Agency, were investigated in the surface water of the Taizi River in Liaoning Province, northeast of China. Samples were collected from the mainstream, and tributaries of the Taizi River in dry, wet, and normal seasons. Five important industrial point sources were also monitored. The total PAH concentrations ranged from 454.5 to 1,379.7 ng l?1 in the dry season, 1,801.6 to 5,868.9 ng l?1 in the wet season, and 367.0 to 5,794.5 ng l?1 in the normal season. The total PAH concentrations were significantly increased in the order of wet season > normal season > dry season. The profile of PAHs in the surface water samples was dominated by low molecular weight PAHs particularly with two- and three-ring components in the three seasons, suggesting that the PAHs were from a relatively recent local source. Source identification inferred that the PAHs in the surface water of the Taizi River came from both petrogenic inputs and pyrogenic sources.  相似文献   

13.
14.
Polycyclic aromatic hydrocarbons (PAHs) in coastal surface sediments from Rizhao offshore area were analyzed by gas chromatography–mass spectrometry. A chemical mass balance (CMB) model developed by the U.S. Environmental Protection Agency (EPA), CMB8.2, was used to apportion sources of PAHs. Seven possible sources, including coal residential, coal power plant, diesel engines exhaust, gasoline engines exhaust, coke oven, diesel oil leaks, and wood burning, were chosen as the major contributors for PAHs in coastal surface sediments. To establish the fingerprints of the seven sources, source profiles were collected from literatures. After including degradation factors, the modified model results indicate that diesel oil leaks, diesel engines exhaust, and coal burning were the three major sources of PAHs. The source contributions estimated by the EPA’s CMB8.2 model were 9.25%, 15.05%, and 75.70% for diesel oil leaks, diesel engines exhaust, and coal burning, respectively.  相似文献   

15.
16.
This paper describes a work aimed at improving the conditions of an extraction method, coupling GC-MS determination, for the analysis without cleanup phase, of polycyclic aromatic hydrocarbons (PAHs) from sediment samples. The automatic Soxhlet extraction in warm mode (using Extraction System B-811 Standard, Büchi) has demonstrated advantages for automation, reduced extraction time, and lower solvent use than for conventional Soxhlet extraction. Under these conditions, the recoveries are very good as they resulted greater than 85 % and, in most of the cases, near 100 %. The repeatability is also satisfactory (relative standard deviation less than 15 %). The detection limits are also acceptable and ranged from 0.001 to0.01 μg/kg dry weight. Fifty-four sediment samples were collected. The total concentration of the 17 compounds investigated, in samples of sediments collected from three Sicilian coastal areas, expressed as the sum of concentrations, varies from 99 to 11,557 μg/kg of dry matrix; concentrations of total PAHs in the sediments of Cala are two to three times higher than the other stations.  相似文献   

17.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Delhi were evaluated to study particulate PAHs profiles during the different seasons of 2003. Samples of urban suspended particulate matter were collected during January 2003 to December 2003 at three locations (Okhla, Dhaulakuan and Daryaganj), using a high volume sampler provided with glass fiber filters. Samples were analyzed using the gas chromatography technique. The annual average concentrations of total PAHs were found as 1,049.3 ng/m(3) at Okhla, 1,344.37 ng/m(3) at Daryaganj, and 1,117.14 ng/m(3) at Dhaulakuan. The seasonal average concentrations were found to be maximum in winter and minimum during the monsoon season. Principal Component Analysis (PCA) of the data was also carried out and the results indicate that diesel and gasoline driven vehicles are the principal sources of PAHs at all the three sites under investigation. Other sources might come from stationary combustion sources such as cooking fuel combustion and industrial emission.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are important organic contaminants with great significance for China, where coal burning is the main source of energy. In this study, concentrations, distribution between different phases, possible sources and eco-toxicological effect of PAHs of the Yangtze River were assessed. PAHs in water, suspended particulate matters (SPM) and sediment samples at seven main river sites, 23 tributary and lake sites of the Yangtze River at the Wuhan section were analyzed. The total concentrations of PAHs in the studied area ranged from 0.242 to 6.235 μg/l in waters and from 31 to 4,812 μg/kg in sediment. The average concentration of PAHs in SPM was 4,677 μg/kg, higher than that in sediment. Benzo(a)pyrene was detected only at two stations, but the concentrations were above drinking water standard. The PAHs level of the Yangtze River was similar to that of some other rivers in China but higher than some rivers in foreign countries. There existed a positive relationship between PAHs concentrations and the TOC contents in sediment. The ratio of specific PAHs indicated that PAHs mainly came from combustion process, such as coal and wood burning. PAHs may cause potential toxic effect but will not cause acute biological effects in sedimentary environment of the Wuhan section of the Yangtze River.  相似文献   

19.
20.
Airborne particulates (PM10) from four different areas within Agra city (a semi-arid region) were collected using respirable dust samplers during the winter season (Nov. 2005–Feb 2006) and were then extracted with methylene chloride using an automated Soxhlet Extraction System (Soxtherm®). The extracts were analyzed for 17 target polycyclic aromatic hydrocarbons (PAHs) and the heterocycle carbazole. The average concentration of total PAH (TPAH) ranged from 8.04 to 97.93 ng m???3. The industrial site had the highest TPAH concentration followed by the residential, roadside, and agricultural sites. Indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, and benzo(b)fluoranthene were the predominant compounds found in the samples collected from all of the sites. The average B(a)P-equivalent exposure, calculated by using toxic equivalent factors derived from literature and the USEPA, was approximately 7.6 ng m???3. Source identification using factor analysis identified prominent three, four, four, and four probable factors at industrial, residential, roadside, and agricultural sites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号