首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bart?n located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11 %). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26 % in the recreation site compared to the control site. Soil temperature is increased by 15 % in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (Corg) and total nitrogen (Ntotal) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.  相似文献   

2.
The crown densities of 186 trees of five common European tree species (Norway spruce (Picea abies), silver fir (Abies alba), Scots pine (Pinus sylvestris), oak (Quercus robur) and beech (Fagus sylvatica) were assessed simultaneously by observation teams from France, Germany and the United Kingdom. Major differences in the scores existed, with the maximum difference on any one tree being 45%. Differences tended to be consistent, with the French team scoring more lightly than the German team and the German team more lightly than the UK team. The differences throw into question the value of international comparisons of forest condition, particularly the use of comparative tables of the extent of forest decline in individual European countries.  相似文献   

3.
Lead concentration in the surface soils from 31 playgrounds in a ward in Tokyo was measured to examine if paint chips, peeled off from playing equipment installed in the playgrounds, contribute to elevated Pb concentration in the soil of public playgrounds. Lead concentration in the paint chips sampled from playgrounds ranged from 0.003 to 8.9%. Lead concentration in the surface soil ranged from 15.2 to 237 mg kg(-1) (average, 55.5 mg kg(-1)) and higher Pb concentration was found in the soil near painted playing equipment indicating that paint chips from playing equipment contributed to increase soil Pb level of playgrounds in Tokyo. The degree of peeling-off of paint on the surface of playing equipment in the public playground (peeling-off index: POI) positively correlated with Pb concentration in the soil (Spearman rank-correlation coefficient, r = 0.366, p = 0.043). The stronger correlation between Pb concentration and isotope ratios (207Pb/206Pb and Pb conc., r = 0.536, p = 0.002, 208Pb/206Pb and Pb conc. r = 0.600, p < 0.001) than that between Pb and POI indicated that gasoline Pb contributed more to the playground-to-playground variation in soil Pb concentration. It was concluded that both gasoline Pb of the past and paint chips contributed to increased Pb concentration in the surface soil of playgrounds in Tokyo, though the contribution of paint chips is smaller than gasoline Pb.  相似文献   

4.
In this study, data from two different meteorology stations were analyzed in order to reveal the effects of the urbanization on the soil temperature. These stations are the Ankara Meteorology Station (AMS), showing the urban effects, and the Esenbo?a Meteorology Station (EMS), showing the rural effects. The soil temperatures measured at depths of 5, 10, 20, and 50 cm at 0700, 1400, and 2100 hours between 1960 and 2005 were used in the analysis. Long-term mean monthly temperatures at each depth and at each time considered were calculated and analyzed using Sen’s slope and Mann–Kendall tests. The results showed that the mean monthly urban soil temperatures were generally higher than the rural soil temperatures. The differences between temperatures measured at 5, 10, 20, and 50 cm in urban and rural stations (ΔT s(AMS???EMS)) ranged between 1.8°C and 2.1°C. As in the urban heat islands, the differences between the urban and rural soil temperatures are high at 2100 hours and low at 1400 hours. It was also observed that, due to the increasing number of buildings around the Esenbo?a Station in recent years, the difference between the urban and rural soil temperatures seems to have become smaller. These show that the factors affecting the urban heat islands and those affecting the soil temperatures are similar. Also, the temperature differences were observed to be higher during the warm season than in the cold season. The frequency distributions of the temperature differences (ΔT s(AMS???EMS)) reveal both positive and negative values. However, the positive temperature differences are obviously prevalent.  相似文献   

5.
Persistence of dicofol residues in cotton lint seed, and soil   总被引:1,自引:0,他引:1  
A supervised field trial was conducted at the CCS Haryana Agricultural University, Hisar to assess the residues of dicofol on cotton, during Kharif season, 2008. Dicofol (Kelthane 18.5EC) was applied at 500 g a.i./ha (T(1)) and 1,000 g a.i./ha T(2)) after 105 days of sowing of cotton crop (Varity Cotton/H-1226). Soil samples were collected on 0 (1 h after treatment), 3, 7, 10, 15, 30, and 60 days after spray and cotton samples were collected at harvest. Samples were processed and residues were quantified by GC-ECD system equipped with capillary column. Limit of detection and limit of quantification (LOQ) were 0.001 and 0.010 mg kg(?-1), respectively, for soil and LOQ for cotton lint and seed was 0.020 mg kg(?-1). Initial residues of 0.588 and 1.182 mg kg(?-1) in soil reached below detectable level (BDL) of 0.010 mg kg(?-1) in T(1) and to the level of BDL (0.010 mg kg(?-1)) in T(2) at harvest (60 days after treatment). In 60 days, residues dissipated almost completely (100 and >99%) in both the treatments. Half-life period was calculated as 8.57 days at single dose and 8.69 days at double dose in soil. Residues of dicofol were detected in cotton lint to the levels of 0.292 and 0.653 mg kg(?-1) and in seed 0.051 and 0.090 mg kg(?-1) in T(1) and T(2) doses, respectively at harvest. Residues in cotton seed were below MRL value of 0.01 mg kg(?-1) in both the doses.  相似文献   

6.
城市土壤Pb污染特征及影响因素分析   总被引:1,自引:0,他引:1  
以乌鲁木齐市和上海市中心城区为研究区域,按不同功能区对城市土壤采样并进行Pb含量及形态分析,结果表明:两市土壤Pb的平均值含量均超出相应土壤Pb的背景值。上海市土壤Pb的含量远远高于乌鲁木齐市;两市土壤Pb在各功能区的分布均存在明显差异,但两市土壤Pb在功能区的分布规律并不相同;两市土壤Pb的形态分布规律趋于一致,乌鲁木齐市土壤Pb活性要大于上海市。造成上述城市土壤Pb污染特征的影响因素有很多。  相似文献   

7.
Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.  相似文献   

8.
We studied the suitability of Panchgavya (five products of cow), new organic amendment, application on seed germination, plant growth, and soil health. After characterization, Panchgavya was mixed with water to form different concentration and was tested for seed germination, germination index, and root and shoot growth of different seedlings. Four percent solution of Panchgavya was applied to different plants to test its efficacy. Panchgavya and other two organic amendments were incorporated in soil to test the change of soil chemical and microbiological parameters. Panchgavya contained higher nutrients as compared to farm yard manure (FYM) and vermicompost. Its application on different seeds has positively influenced germination percentage, germination index, root and shoot length, and fresh and dry weight of the seedling. Water-soluble macronutrients including pH and metal were positively and negatively correlated with the growth parameters, respectively. Four percent solution of Panchgavya application on some plants showed superiority in terms of plant height and chlorophyll content. Panchgavya-applied soil had higher values of macro and micronutrients (zinc, copper, and manganese), microbial activity as compared to FYM, and vermicompost applied soils. Application of Panchgavya can be gainfully used as an alternative organic supplement in agriculture.  相似文献   

9.
A compact model for evaluation of acid flushing of heavy-metal-contaminated soil in a small-scale on-site treatment plant is proposed. The model assumes that the soil was re-packed in a container after excavation resulting in a soil structure with heterogeneous and random physical and chemical properties. To evaluate the effects of heterogeneity on the efficiency of contaminant removal by acid flushing, a numerical analysis of lead transport in the heterogeneous soil medium was performed. The model examines cation exchange and surface complexation reactions involving three cations (Ca, Pb, and H) and one anion (Cl) in both dissolved and exchangeable forms, two Pb surface complexes (SOPbCl and SOPbOH), and one Cl surface complex (SOH2Cl). The transport of these species during flushing with acid in a synthetically generated two-dimensional heterogeneous soil was simulated in the model. Results indicated that the flushing fluid preferentially followed pathways with large permeability. The heterogeneous cation exchange capacity (CEC) distribution and surface complexation sites had a significant effect on the transport of dissolved species. Because the CEC was set to a relatively low value, Pb was adsorbed mainly as surface complexes (SOPbCl and SOPbOH). Simulation results suggest that blocks of low hydraulic conductivity located in the upper part of the model domain greatly impede solute transport. Ponding conditions did not significantly affect the efficiency of decontamination. The model and its results are useful in the design of small-scale treatment plants for acid flushing.  相似文献   

10.
CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from ??341 to 1,193 mg m???2 h???1, and the mean value over all three forests and sampling times was 286 mg m???2 h???1. CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.  相似文献   

11.
Efficacious botanical derivatives can provide an alternative to synthetic pesticides for organic farming systems. However, there is lack of information regarding the side effects of organic pesticides on key soil ecological processes. In this study, we investigated the effects of aqueous extracts from Urginea maritima and Euphorbia myrsinites exhibiting translaminar and systemic activity against pests on microbial biomass and enzymatic activities in soil. Two grams of plant material was extracted with 100 ml of water and then diluted 1:100, 2:100, and 4:100 with distilled water. Diluted plant extracts were applied around hypocotyl of tomato by soil drench. The effect of both plant extracts on microbial biomass C, amount of total N and organic C, and enzymatic activity in soil was significant. After the last application, the highest microbial biomass C was determined in the lowest U. maritima concentration (U 1:100). Soils treated with the highest concentration of U. maritima (U 4:100) had always lower SMBC content than control soil. All concentrations of E. myrsinites decreased microbial biomass C by 18% to 27% compared to the control. Total nitrogen and organic carbon decreased in soils without (control) and with treated U. maritima extract from first application to last application. Phosphatase, urease, and β-glucosidase activities were monitored in plant extract-treated soils. Except U. maritima 1:100 treatments of second and fourth applications, the other treatments of plant extracts negatively affected enzymatic activity in soil. U. maritima and E. myrsinites plant extracts exhibited different effects on soil microbial biomass and activity, probably because of their different chemical contents.  相似文献   

12.
A majority of the research on forest fragmentation is primarily focused on animal groups rather than on tree communities because of the complex structural and functional behavior of the latter. In this study, we show that forest fragmentation provokes surprisingly rapid and profound alterations in tropical tree community. We examine forest fragments in the tropical region using high-resolution satellite imagery taken between 1973 and 2004 in the Southern Western Ghats (India) in relation to landscape patterns and phytosociological datasets. We have distinguished fragmentation in six categories—interior, perforated, edge, transitional, patch, and undetermined—around each forested pixel. Furthermore, we have characterized each of the fragment class in the evergreen and semi-evergreen forest in terms of its species composition and richness, its species similarity and abundance, and its regeneration status. Different landscape metrics have been used to infer patterns of land-use changes. Contiguous patches of >1,000 ha covered 90% of evergreen forest in 1973 with less porosity and minimal plantation and anthropogenic pressures; whereas in 2004, the area had 67% forest coverage and a high level of porosity, possibly due to Ochlandra spread and increased plantations which resulted in the loss of such contiguous patches. Results highlight the importance of landscape metrics in monitoring land-cover change over time. Our main conclusion was to develop an approach, which combines information regarding land cover, degree of fragmentation, and phytosociological inputs, to conserve and prioritize tropical ecosystems.  相似文献   

13.
The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca2+, K+, Na+), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca2+, and K+ values significantly increased, whereas Na+, total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na+ values increased, whereas Ca2+ concentration decreased through time on the control plot. Soil pH, total P, K+, and CEC did not show significant changes through time on the control plot.  相似文献   

14.
Cultivating native lands may alter soil phosphorus (P) distribution and availability. The present study aimed to determine the distribution of P in soil aggregates for different long-term land management practices. The partitioned P in labile (L), Fe/Al-bound, Ca-bound, organic pools, and total P in four aggregate size fractions were determined for five land uses (forest, vineyard after 30 years, wetland, alfalfa, and wheat cultivated soil after 20 years). Both native land uses (forest and wetland) were distinguished by high and low amounts of large macro- and micro-aggregates, respectively, compared with disturbed soils (vineyard, alfalfa, and wheat soils). Labile P in large macro-aggregates were higher in native land use when compared with the other land uses, which led to increasing lability of P and accelerated water pollution. Soils under native conditions sequestered more Ca-bound P in large macro-aggregates than the soils in disturbed conditions. Conversion of native lands to agricultural land caused enhanced organic P storage in aggregates smaller than the 2 mm from 31.0 to 54.3 %. Soils under forest had 30 % total P more than the vineyard for the aggregates >2 mm after 30 years land use change. However, the amount of P in smaller (<2 mm) sized aggregates was increased by 29 % for the vineyard when compared with the forest. The P storage as bound Ca particles for the large macro-aggregates had negative correlation with the micro-aggregates.  相似文献   

15.
Achieving adequate and desirable forest regeneration is necessary for maintaining native tree species and forest composition. Advance tree seedling and sapling regeneration is the basis of the next stand and serves as an indicator of future composition. The Pennsylvania Regeneration Study was implemented statewide to monitor regeneration on a subset of Forest Inventory and Analysis plots measured by the U.S. Forest Service. As management techniques are implemented to improve advance regeneration, assessments of the change in the forest resource are needed. When the primary focus is on detecting change, hypothesis tests should have small type II (β) error rates. However, most analyses are based on minimizing type I (α) error rates and type II error rates can be quite large. When type II error rates are high, actual improvements in regeneration can remain undetected and the methods that brought these improvements may be deemed ineffective. The difficulty in detecting significant change in advance regeneration when small type I error rates are given priority is illustrated. For statewide assessments, power (1-β) to detect changes in proportion of area having adequate advance regeneration is relatively weak (≤0.5) when the change is smaller than 0.05. For evaluations conducted at smaller spatial scales, such as wildlife management units, the reduced sample size results in only marginal power even when relatively large changes (≥0.20) in area proportion occur. For fixed sample sizes, analysts can consider accepting larger type I error rates to increase the probability of detecting change (smaller type II error rates) when it occurs, such that management methods that positively affect regeneration can be identified.  相似文献   

16.
Declining forest health has been observed during the past several decades in several areas of the eastern USA, and some of this decline is attributed to acid deposition. Decreases in soil pH and increases in soil acidity are indicators of potential impacts on tree growth due to acid inputs and Al toxicity. The Cherry River watershed, which lies within the Monongahela National Forest in West Virginia, has some of the highest rates of acid deposition in Appalachia. East and West areas within the watershed, which showed differences in precipitation, stream chemistry, and vegetation composition, were compared to evaluate soil acidity conditions and to assess their degree of risk on tree growth. Thirty-one soil pits in the West area and 36 pits in the East area were dug and described, and soil samples from each horizon were analyzed for chemical parameters. In A horizons, East area soils averaged 3.7 pH with 9.4 cmolc kg???1 of acidity compared to pH 4.0 and 6.2 cmolc kg???1 of acidity in West area soils. Extractable cations (Ca, Mg, and Al) were significantly higher in the A, transition, and upper B horizons of East versus West soils. However, even with differences in cation concentrations, Ca/Al molar ratios were similar for East and West soils. For both sites using the Ca/Al ratio, a 50% risk of impaired tree growth was found for A horizons, while a 75% risk was found for deeper horizons. Low concentrations of base cations and high extractable Al in these soils translate into a high degree of risk for forest regeneration and tree growth after conventional tree harvesting.  相似文献   

17.
The concentrations of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey were investigated. Soil samples were collected at distances of 0, 25 and 50 m from the roadside. The concentrations of lead, cadmium and copper were measured by Flame Atomic Absorption Spectrophotometry (FAAS). A slotted tube atom trap (STAT) was used to increase the sensitivity of lead and cadmium in FAAS. Lead concentrations in soil samples varied from 1.3 to 45 mg kg−1 while mean lead levels in plants ranged from120 ng g−1 for grape in point-4 to 866 ng g−1 for apple leaves in point-2. Lead analyses showed that there was a considerable contamination in both soil and plants affected from traffic intensity. Overall level of Cd in soil samples lies between 78 and 527 ng/g while cadmium concentration in different vegetations varied in the range of 0.8–98.0 ng g−1. Concentrations of copper in soil and plant samples were found in the range of 11.1–27.9 mg kg−1 for soil and 0.8–5.6 mg kg−1 for plants. Standard reference material (SRM) was used to find the accuracy of the results of soil analyses.  相似文献   

18.
This study was conducted to evaluate, using soil columns, the mobilization and redistribution of heavy metals (Zn, Cd, and Pb) among different soil fractions by soluble organic ligands within poultry litter. Uncontaminated soil was amended with Zn, Cd, and Pb to achieve concentration levels of 400, 8, and 200 mg kg−1 soil, respectively. Columns repacked with this amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl2, or poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for exchangeable (EXC), carbonate (CARB) organic matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Considerable mobilization of Zn, Cd, and Pb occurred in soil during EDTA leaching. Leaching with PLE and CaCl2 solutions significantly decreased Zn and Cd concentrations in the EXC, CARB, and OM fractions. These solutions significantly decreased Pb concentration in the EXC fraction, while PLE solubilized more Pb from EXC fraction than CaCl2. Thus, the applied poultry litter may change Zn, Cd, and Pb fractions in metal-amended soil and possibly enhance metal mobility.  相似文献   

19.
Long-term data on precipitation and runoff are essential to draw firm conclusions about the behavior and trends of hydrological catchments that may be influenced by land use and climate change. Here the longest continuous runoff records from small catchments (<1 km(2)) in Switzerland (and possibly worldwide) are reported. The history of the hydrological monitoring in the Sperbel- and Rappengraben (Emmental) is summarized, and inherent uncertainties in the data arising from the operation of the gauges are described. The runoff stations operated safely for more than 90% of the summer months when most of the major flood events occurred. Nevertheless, the absolute values of peak runoff during the largest flood events are subject to considerable uncertainty. The observed differences in average, base, and peak runoff can only partly be attributed to the substantial differences in forest coverage. This treasure trove of data can be used in various ways, exemplified here with an analysis of the generalized extreme value distributions of the two catchments. These distributions, and hence flood return periods, have varied greatly in the course of one century, influenced by the occurrence of single extreme events. The data will be made publicly available for the further analysis of the mechanisms governing the runoff behavior of small catchments, as well as for testing stochastic and deterministic models.  相似文献   

20.
We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg.ha(-1), dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data and land-cover map (University of Maryland) from Advanced Very High Resolution Radiometer (AVHRR) and 2001 products from Moderate Resolution Imaging Spectroradiometer (MODIS) at 1-km resolution for the region; and 30-m resolution land-cover maps from the National Land Cover Data (NLCD) for a subarea to conduct nine simulations to address our questions. Sensitivity analysis showed that (1) AVHRR data tended to underestimate AGB density by 11%, on average, compared to that estimated using MODIS data; (2) regional mean AGB density increased slightly from 124 (1992) to 126 Mg ha(-1) (2001) by 1.6%; (3) a substantial decrease in total forest AGB across the region was detected, from 2,507 (1992) to 1,961 Tg (2001), an annual rate of -2.4%; and (4) in the subarea, while NLCD-based estimates suggested a 26% decrease in total AGB from 1992 to 2001, AVHRR/MODIS-based estimates indicated a 36% increase. The major source of uncertainty in change detection of total forest AGB over large areas was due to area differences from using land-cover maps produced by different sources. Scaling up 30-m land-cover map to 1-km resolution caused a mean difference of 8% (in absolute value) in forest area estimates at the county-level ranging from 0 to 17% within a 95% confidence interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号