首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吹扫捕集/气相色谱法测定空气中挥发性有机物   总被引:11,自引:0,他引:11  
研究并建立了用吹扫捕集气相色谱法测定空气中挥发性有机物的分析方法。以空气中苯系物为目标化合物,以静态法配制标准气体,分别作了高、中、低三种浓度的标准曲线,其相关系数在0 98以上。该法对空气中苯系物的方法检出限为0 14~0 16μg m3,相对标准偏差在2 1%~6 3%之间,回收率在92%~120%。  相似文献   

2.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

3.
A number of volatile organic compounds (VOCs) including acetone, methyl ethyl ketone, toluene, ethylbenzene, m,p-xylene, styrene, and o- xylene released during food decaying processes were measured from three types of decaying food samples (Kimchi (KC), fresh fish (FF), and salted fish (SF)). To begin with, all the food samples were contained in a 100-mL throwaway syringe. These samples were then analyzed sequentially for up to a 14-day period. The patterns of VOC release contrasted sharply between two types of fish (FF and SF) and KC samples. A comparison of data in terms of total VOC showed that the mean values for the two fish types were in the similar magnitude with 280 ± 579 (FF) and 504 ± 1,089 ppmC (SF), while that for KC was much lower with 16.4 ± 7.6 ppmC. There were strong variations in VOC emission patterns during the food decaying processes between fishes and KC that are characterized most sensitively by such component as styrene. The overall results of this study indicate that concentration levels of the VOCs differed significantly between the food types and with the extent of decaying levels through time.  相似文献   

4.
Suddenly occurring and time limited chemical exposures caused by unintended incidents might pose a threat to many workers at various work sites. Monitoring of exposure during such occasional incidents is challenging. In this study a compact, low-weight and personal semi-automatic pumped unit for sampling of organic vapor phase compounds from occupational air during sporadic and suddenly occurring incidents has been developed, providing simple activation by the worker potentially subjected to the sudden occurring exposures when a trained occupational hygienist is not available. The sampler encompasses a tube (glass or stainless steel) containing an adsorbent material in combination with a small membrane pump, where the adsorbent is capped at both ends by gas tight solenoid valves. The sampler is operated by a conventional 9 V battery which tolerates long storage time (at least one year), and is activated by pulling a pin followed by automatic operation and subsequent closing of valves, prior to shipping to a laboratory. The adjustable sampling air flow rate and the sampling time are pre-programmed with a standard setting of 200 mL min(-1) and 30 min, respectively. The average airflow in the time interval 25-30 min compared to average airflow in the interval 2-7 min was 92-95% (n = 6), while the flow rate between-assay precisions (RSD) for six different samplers on three days each were in the range 0.5-3.7%. Incident sampler recoveries of VOCs from a generated VOC atmosphere relative to a validated standard method were between 95 and 102% (+/-4-5%). The valves that seal the sampler adsorbent during storage have been shown to prevent an external VOC atmosphere (500 mg m(-3)) to enter the adsorbent tube, in addition to that the sampler adsorbent is storable for at least one month due to absence of ingress of contaminants from internal parts. The sampler was also suitable for trapping of semi-volatile organophosphates.  相似文献   

5.
An analytical strategy for comprehensive screening of target and non-target volatile organic compounds (VOCs) in surface water was developed, and it was applied to the analysis of VOCs in water samples from Daliao River. The target VOCs were quantified using purge and trap-gas chromatography-mass spectrometry (P&T-GC/MS). Among 20 water samples, 34 VOCs were detected at least once. For the screening of non-target VOCs, the double distillation apparatus was used for the pre-concentration of VOCs prior to P&T-GC/MS analysis. Subsequently, deconvolution software and NIST mass spectral library were applied for the identification of the non-target compounds. A total of 17 non-target VOCs were identified. The most frequently detected VOCs (detection frequencies >80 %) included toluene, benzene, naphthalene, 1,2-dichloroethane, 1,1,2-trichloroethane, and methyl tert-butyl ether. The distribution of VOCs obviously varied according to the sampling sites. The total concentrations of VOCs in water samples collected from the heavily industrialized cities (Anshan and Liaoyang) and the busy port city (Yingkou) were relatively high. The top ten priority VOCs, including naphthalene, 1,2-dichloroethane, o-xylene, 1,3-dichlorobenzene, tetrachloroethene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, ethylbenzene, m-xylene, and p-xylene, were obtained by the ranking of the detected VOCs according to their occurrence and ecological effects. These compounds should be given more attention in monitoring and drainage control strategies.  相似文献   

6.
456 water samples collected from 152 water sources in 2006 were analyzed for 21 volatile organic compounds (VOCs). Concentrations of 21 VOCs ranged from below method detection limits of the laboratory to 7.65 ??g/L (toluene), but seldom exceeded the concentration limits set in the National Drinking Water Quality Standards (GB5749-2006) or the National Environmental Quality Standards for Surface Water (GB3838-2002) of China. Of the 21 individual VOCs analyzed, 11 VOCs were detected in at least one sample at or above 1.0 ??g/L; 6.6% of the water samples had a detection of at least one VOC at or above 1.0 ??g/L, and 2.6% had a detection of at least two VOCs at or above 1.0 ??g/L. Based on the statistical data of detection frequencies above the method detection limits, 75% of the samples detected at least one VOC, and 65% of the samples detected at least two VOCs. Chloroform, toluene, and 1,2-dichloroethene were the three most frequently detected VOCs, with detection frequencies of 76.97%, 68.42%, and 44.08%, respectively. Volatile halogenated hydrocarbons and gasoline components were the two most frequently detected VOC groups.  相似文献   

7.
Diffusive samplers were used to measure the vertical concentrations of benzene, toluene, n-hexane, cyclohexane, ethylbenzene and o-, m- and p-xylenes on both sides of two NS-oriented street canyons in Murcia (Spain) during a 5-day period. Non-dimensional relationships of concentration and height were calculated in order to study the behaviour of their concentration vertical profiles. The results show that the vertical profiles of benzene, toluene, n-hexane and cyclohexane concentrations were similar in both streets and on both sides of each street. Some differences were found in vertical profiles between streets and sides for ethylbenzene and xylenes, probably due to their higher affinity for adsorption into building materials. The similarities found for the first set of VOCs suggest that the dynamics of the dispersion was the same for both streets and was mainly influenced by microscale thermal effects. Finally, the concentration measurements of benzene, toluene, n-hexane, cyclohexane, and ethylbenzene were adjusted to expressions in the form c?=?c 0(h/h 0) A , and a regression coefficient R 2?=?0.962 (p?=?0.0000) was obtained. The decreasing concentration of these compounds with height should be taken into account when assessing population exposure to these pollutants.  相似文献   

8.
Worshipping activity is a customary practice related with many religions and cultures in various Asian countries, including India. Smoke from incense burning in religious and ritual places produces a large number of health-damaging and carcinogenic air pollutants include volatile organic compounds (VOCs) such as formaldehyde, benzene, 1,3 butadiene, styrene, etc. This study evaluates real-world VOCs emission conditions in contrast to other studies that examined emissions from specific types of incense or biomass material. Sampling was conducted at four different religious places in Raipur City, District Raipur, Chhattisgarh, India: (1) Hindu temples, (2) Muslim graveyards (holy shrines), (3) Buddhist temples, and (4) marriage ceremony. Concentrations of selected VOCs, respirable particulate matter (aerodynamic diameter, <5 μm), carbon dioxide, and carbon monoxide were sampled from the smoke plumes. Benzene has shown highest emission factor (EF) among selected volatile organic compounds in all places. All the selected religious and ritual venues have shown different pattern of VOC EFs compared to laboratory-based controlled chamber studies.  相似文献   

9.
Healthcare settings present a challenging environment for assessing low-level concentrations of specific volatile organic compounds (VOCs) in the presence of high background concentrations of alcohol from the use of hand sanitizers and surface disinfectants. The purposes of this laboratory-based project were to develop and validate a sampling and analysis methodology for quantifying low-level VOC concentrations as well as high-level alcohol concentrations found together in healthcare settings. Sampling was conducted using evacuated canisters lined with fused silica. Gas chromatography/mass spectrometry analysis was performed using preconcentration (for ppb levels) and loop injection (for ppm levels). For a select list of 14 VOCs, bias, precision, and accuracy of both the preconcentration and loop injection methods were evaluated, as was analyte stability in evacuated canisters over 30 days. Using the preconcentration (ppb-level) method, all validation criteria were met for 13 of the 14 target analytes-ethanol, acetone, methylene chloride, hexane, chloroform, benzene, methyl methacrylate, toluene, ethylbenzene, m,p-xylene, o-xylene, alpha-pinene, and limonene. Using the loop injection (ppm-level) method, all validation criteria were met for each analyte. At ppm levels, alpha-pinene and limonene remained stable over 21 days, while the rest of the analytes were stable for 30 days. All analytes remained stable over 30 days at ppb levels. This sampling and analysis approach is a viable (i.e., accurate and stable) methodology that will enable development of VOC profiles for mixed exposures experienced by healthcare workers.  相似文献   

10.
Emissions of five volatile organic sulfur compounds (VOSCs), including methanethiol, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide, from a heavily polluted river, Shijing River in Guangzhou of South China, was studied. The results showed that the amounts of all VOSCs emitted from the river increased from downstream to upstream along the river with increasing magnitude of water pollution. The emission of carbonyl sulfide was the highest among the target analytes, ranging from 23.8 microg m(-2) h(-1) to 42.6 microg m(-2) h(-1) at the water surface of Shijin River. The concentration levels of VOSCs on the riverbank were lower than those at the water surface either in Shijing River or in Liuxi River. However, the contribution of dimethyl disulfide to the total VOSCs on the riverbank was higher than that at the water surface in most sampling sites, indicating that there might be a point source of dimethyl disulfide on the riverbank besides diffusion from water surface. The 24-h semi-continuous monitoring data revealed that the emissions of VOSCs at the water surface peaked at 9:00 and 21:00, which was consistent with the water quality variability in Shijin River caused by daily tidal variation.  相似文献   

11.
A method has been developed for concurrent analysis of C2-C7 hydrocarbons and C2-C5 oxygenated volatile organic compounds (o-VOCs) including alcohols, aldehydes, ketones and ethers. A multi-bed, Peltier-cooled adsorbent trap, consisting of Carboxen 1000 and Carbopack B, was used to acquire one sample per hour. Upon injection the sample was split in an approximately 50:50 ratio between a 50 m aluminium oxide (Al2O3) porous layer open tubular (PLOT) column and a 10 m LOWOX column. Eluents from each column were then analysed using flame ionisation detection (FID). Regular calibration of the system was performed using a standard cylinder mixture at the parts per billion by volume (ppbV) level for non-methane hydrocarbons (NMHCs) and a permeation tube method for the oxygenated species. The system is fully automated with NMHC detection limits between 1 and 10 parts per trillion by volume (pptV) and o-VOC detection limits between 10 and 40 pptV.  相似文献   

12.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

13.
Proton transfer reaction-mass spectrometry (PTR-MS) is a new and emerging technique for the measurement and monitoring of volatile organic compounds (VOCs) at low concentrations in gaseous samples in more-or-less real time. Utilising chemical ionisation, it combines the desirable attributes of high sensitivity and short integration times with good precision and accuracy. Recently it has been exploited in applications related to atmospheric science. Here, the principles of operation of the PTR-MS are described, its advantages and disadvantages discussed, its inherent uncertainties highlighted, some of its uses in atmospheric sciences reviewed, and some suggestions made on its future application to atmospheric chemistry.  相似文献   

14.
During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.  相似文献   

15.
A method has been developed for the speciation and quantitative determination of hydrocarbons in urban air in the city of Leeds. Hydrocarbons were pre-concentrated by adsorbent tube air sampling and analyzed using thermal desorption and gas chromatography with flame ionization detection and structural confirmation by mass spectrometric detection. While automated volatile organic compound (VOC) analyzers produced data for a maximum of about 30 compounds simultaneously, with the method described here, a total of 68 C6-C12 hydrocarbons were measured simultaneously in one analysis at parts per billion (ppb) levels. Several monitoring surveys were performed, one during the winter of 1993 and the other in the summer of 1994, at a number of sites to investigate the levels of VOCs identified in the urban air of Leeds.  相似文献   

16.
The compositions, spatial distributions, seasonal variations and ozone formation potential (OFP) of volatile organic compounds (VOCs) were investigated in the atmosphere of Haicang District, Xiamen City, Southeast China. Twenty-four types of VOCs were measured in this study, and ethanol, methylene chloride, toluene, ethyl acetate and isopropyl alcohol were the abundant species based on concentration rank. The concentrations of total VOCs (TVOCs) in industrial areas were higher than those in residential and administrative areas and background site. For industrial areas, the TVOCs concentrations in summer were higher than those in winter, which might result from higher emissions from industrial activities because of stronger evaporation in summer. In contrast, non-industrial areas showed higher concentrations in winter due to the unfavorable meteorological conditions. The spatial distribution of BTEX (benzene, toluene, ethylbenzene and xylene) followed the order of industrial areas > residential and administrative areas > background site, and the concentrations in summer were lower than those in winter for most sites. The high ratios (8.9-14.0) of T/B in this study indicated that industrial emissions were the main sources in this district. X/B ratios were used to assess the ages of air parcels and provided evidence of the transport of air parcels among these sites. Total OFP (TOFP) showed the trend of increase with the increase of TVOCs, and toluene was found as the major contributor to TOFP.  相似文献   

17.
广佛公路(盐步段)两侧挥发性有机物(VOC)污染研究   总被引:8,自引:3,他引:8  
选取广佛公路盐步路段作机动车尾气污染研究 ,结果表明 :污染物主要由烷烃、苯系物和氯代烃组成 ,主要是毒害性 VOC;污染随着与公路距离的增加而降低 ;污染源除机动车以外 ,还有大量的工业企业  相似文献   

18.
使用保留时间锁定软件 (RTL) ,在气相色谱体系中建立了水质中 5 3种挥发性有机物的保留时间数据库 ,使原始的保留时间成为化合物定性的可靠参数 ,实现了未知样品在色谱仪上的定性 ,提高了分析效率。  相似文献   

19.
Exposure to vapours of volatile chemicals is a major occupational and environmental health concern. Toxicity testing of volatile organic compounds (VOCs) has always faced significant technological problems due to their high volatility and/or low solubility. The aim of this study was to develop a practical and reproducible in vitro exposure technique for toxicity testing of VOCs. Standard test atmospheres of xylene and toluene were generated in glass chambers using a static method. Human cells including: A549-lung derived cell lines, HepG2-liver derived cell lines and skin fibroblasts, were grown in porous membranes and exposed to various airborne concentrations of selected VOCs directly at the air/liquid interface for 1 h at 37 degrees C. Cytotoxicity of test chemicals was investigated using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) and NRU (neutral red uptake) assays following 24 h incubation. Airborne IC(50) (50% inhibitory concentration) values were determined using dose response curves for xylene (IC(50)=5350+/- 328 ppm, NRU; IC(50)=5750+/- 433 ppm, MTS in skin fibroblast) and toluene (IC(50)=0 500+/- 527 ppm, NRU; IC(50)=11,200 +/- 1,044 ppm, MTS in skin fibroblast). Our findings suggest that static direct exposure at the air/liquid interface is a practical and reproducible technique for toxicity testing of VOCs. Further, this technique can be used for inhalational and dermal toxicity studies of volatile chemicals in vitro as the exposure pattern in vivo is closely simulated by this method.  相似文献   

20.
A canister-based 1 week sampling method using a mechanical flow controller and a 6 L fused-silica-lined canister was evaluated for the long-term measurement of 47 VOCs in ambient air at pptv (volume/volume) to ppbv levels by use of a three-stage preconcentation method followed by GC-MS analysis. The GC conditions were initially optimized for complete separations of several pptv-level VOCs (e.g. vinyl chloride, 1,3-butadiene, acrylonitrile, 1,2-dichloroethane and chloroform) in ambient air because the selected ions are easily interfered with by coexisting C4-, C5-hydrocarbons and analytes presented at ppbv levels. Thirty-four VOCs determined by the 1 week and 24 h sampling method in December 16-22 (2002) had concentrations of 6.0-15000 pptv per compound. Concentrations of 28 VOCs (including polar VOCs (e.g. methyl isobutyl ketone and butyl acetate)) obtained by the method were approximately equal to the mean values calculated from 24 h sampling (< +/- 10% deviation). Six VOCs that had low concentrations of 6.0-43 pptv showed more than +/- 10% deviation. Thirteen VOCs were not detected during the entire sampling period. The effect of relative humidity or ozone for the specific VOCs (e.g. MIBK, butyl acetate, vinyl chloride, 1,3-butadiene and styrene) was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号