首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons.  相似文献   

2.
The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.  相似文献   

3.
Analytical results of soil samples taken in three different mercury mining sites in Northern Spain are studied to assess the potential adverse health effects of the exposure to trace elements associated with the mining process. Doses contacted through ingestion and inhalation and the dose absorbed through the skin were calculated using USEPA's exposure parameters and the US Department of Energy's toxicity values. The results of the risk assessment indicate that the highest risk is associated with ingestion of soil particles and that the trace element of major concern is arsenic, the exposure to which results in a high cancer risk value for all the sites ranging from 3.3 × 10(-5) to 3.6 × 10(-3), well above the 1 × 10(-5) probability level deemed unacceptable by most regulatory agencies. Regarding non-cancer effects, exposure to polluted soils yields an aggregate hazard index above the threshold value of 1 for all three sites, with As and Hg as the main contributors. Risk assessment has proven to be a very useful tool to identify the contaminants and exposure pathways of most concern in the soils from metal mining sites, as well as to categorize them in terms of action priority to ensure fitness for use.  相似文献   

4.
This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at Catemu valley, only the copper concentration was higher than this value. Statistically significant correlation was found for Cu-Sb in all soils; more significant Cu-As, Cu-Sb and Sb-As correlations were evaluated for soils from Puchuncaví and Catemu valleys, corroborating that high concentrations of copper, arsenic and antimony in these soils coming from the same pollution sources, the copper industry and the thermoelectric power plant.  相似文献   

5.
The influence of silicon on responses to copper excess was studied in plants of Erica andevalensis. Plantlets were grown in nutrient solutions containing two Cu (1 and 500 μM) and three Si concentrations (0, 0.5 and 1 mM). Plant growth, water content, and mineral nutrient concentration were determined. Plants grown with 500 μM Cu showed differences in growth and shoot water content depending on Si supply. The addition of 1 mM Si in high-Cu nutrient solutions significantly improved plant growth and reduced water loss preventing plant death related to Cu-excess. Silicon supply reduced significantly leaf Cu concentration (up to 32%) and increased Cu concentration in roots. Phytoliths isolated from leaves were analysed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Such phytoliths consisted in silica deposits associated with Cu and other elements (K, Ca, P). Improvement by Si of Cu tolerance in E. andevalensis was clearly related to the inhibition of Cu upward transport. The leaf phytoliths formed in Si-treated plants might have some contribution to tolerance by Cu immobilisation and inactivation.  相似文献   

6.
The presence of natural estrogen hormones as trace concentrations in the environment has been reported by many researchers and is of growing concern due to its possible adverse effects on the ecosystem. In this study, municipal biosolids, poultry manure (PM) and cow manure (CM), and spent mushroom compost (SMC) were analyzed for the presence of seven estrogen hormones. 17α-estradiol, 17β-estradiol, 17α-dihydroequilin, and estrone were detected in the sampled biosolids and manures at concentrations ranging from 6 to 462 ng/g of dry solids. 17α-estradiol, 17β-estradiol, and estrone were also detected in SMC at concentrations ranging from 4 to 28 ng/g of dry solids. Desorption experiments were simulated in the laboratory using deionized water (milli-Q), and the aqueous phase was examined for the presence of estrogen hormones to determine their desorption potential. Very low desorption of 0.4% and 0.2% estrogen hormones was observed from municipal biosolids and SMC, respectively. An estimate of total estrogen contribution from different solid waste sources is reported. Animal manures (PM and CM) contribute to a significant load of estrogen hormones in the natural environment.  相似文献   

7.
For decades Malaysia was the world's largest producer of Sn, but now the vast open cast mining operations have left a legacy of some 100,000 ha of what is effectively wasteland, covered with a mosaic of tailings and lagoons. Few plants naturally recolonise these areas. The demand for such land for both urban expansion and agricultural use has presented an urgent need for better characterisation. This study reports on the formation of artificial soils from alluvial Sn mining waste with a focus on the effects of experimental treatments on soil chemistry. Soil organic matter, clay, and pH were manipulated in a controlled environment. Adding both clay tailings and peat enhanced the cation exchange capacity of sand tailings but also reduced the pH. The addition of peat reduced the extractable levels of some elements but increased the availability of Ca and Mg, thus proving beneficial. The use of clay tailings increased the levels of macro and micronutrients but also released Al, As, La, Pb and U. Additionally, the effects of soil mix and mycorrhizal treatments on growth and foliar chemistry were studied. Two plant species were selected: Panicum milicaeum and Pueraria phaseoloides. Different growth patterns were observed with respect to the additions of peat and clay. The results for mycorrhizal treatment (live inoculum or sterile carrier medium) are more complex, but both resulted in improved growth. The use of mycorrhizal fungi could greatly enhance rehabilitation efforts on sand tailings.  相似文献   

8.
9.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   

10.
11.
Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg?1, with a mean of 0.64 mg kg?1, of which 57.5 % exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4 %. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg?1, with a mean of 0.24 mg kg?1. A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r?=?0.770, ρ?<?0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg?1, with a mean of 0.46 mg kg?1. The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6 %; that with Cd exceeding 1 mg kg?1, called as “Cd rice,” reaches 11.1 %. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r?=?0.177, ρ?<?0.05) but not significantly with T-Cd in the soils (r?=?0.091, ρ?>?0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day?1 person?1 on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.  相似文献   

12.
In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.  相似文献   

13.
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.  相似文献   

14.
15.
In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.  相似文献   

16.
Is identification of seed bank (SB) species useful for sustainable management of vegetation restoration on Cu-contaminated soils? How does Cu contamination of the soil affect the SB and can incorporating compost into Cu-contaminated soils counter the effects of Cu? The topsoil SB was investigated at seven contaminated sub-sites of a wood preservation site. The germination parameters of the seeds were recorded using three substrates: a washed river sand (Sand), the same sand spiked with CuSO4 to reach the same Cu concentrations as in the soil pore water (0.3 to 3.2 mg Cu/L) (Cu), and the same Cu-spiked sand amended with compost (CPM). The total number of germinated seeds (NGS) was 1,081. The whole seedling dataset enabled 12 plant species and eight families to be identified in the SB. Species richness and Shannon indexes were low. The addition of Cu in the germination substrate enhanced total NGS at one sub-site and the addition of CPM increased plant diversity at three sub-sites. SB composition varied with the sub-site but did not correlate with total soil Cu or with the Cu concentration in the soil pore water. Three species belonging to the Poaceae family dominated. In terms of total NGS, the dominant species were Portulaca oleracea and Agrostis capillaris. Similarities between SB and established vegetation were low but increased when the soil bulk density was reduced. The Cu-tolerant species P. oleracea and A. capillaris dominated in both the SB and the established vegetation. However, the pattern of SB and established vegetation differed and consequently SB was not a sufficient indicator to predict the future vegetation.  相似文献   

17.
The long-term observations of the restoration of chemical and biological properties of cultivated podzol soil polluted by airborne emissions from a copper-nickel smelter located in the western Arctic of Russia were carried out. After 8 years, the total content of copper in soil decreased to a third (from 6230 to 2080 mg kg(-1)) and nickel to a sixth (from 3500 to 580 mg kg(-1)). Based on these observations, the removal time for heavy metals to reach permissible levels was calculated. The estimate was 100 years for copper and 108 years for nickel. Soil remained toxic to wheat seedlings, especially to their roots, for the whole observation period. A restoration of the number and activity of soil microorganisms was associated with the reduction in soil metal-toxicity. The number of non-sporeforming saprophytic bacteria was quickly restored concurrently with the removal of metals from the soil; fungal biomass also increased.  相似文献   

18.
In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As.  相似文献   

19.
A new approach to performing an accelerated sequential extraction of trace elements from solid samples has been proposed. It has been shown that rotating coiled columns (RCC) earlier used in counter-current chromatography can be successfully applied to the dynamic leaching of heavy metals from soils and sediments. A solid sample was retained in the rotating column as the stationary phase under the action of centrifugal forces while different eluents (aqueous solutions of complexing reagents, mineral salts and acids) were continuously pumped through. The procedure developed is time saving and requires only 4-5 h instead of the several days needed for traditional sequential extraction (TSE), complete automation being possible. Losses of solid sample are minimal. In most cases the recoveries of readily bioavailable and leachable forms of Pb, Zn, and Cd are higher, if a dynamic extraction in RCC is used. Since naturally occurring processes are always dynamic, continuous extraction in RCC may help to estimate the contents of leachable forms and their potential risk for the environment more correctly than batch TSE. The Kersten-Foerstner and McLaren-Crawford leaching schemes have been compared, the former has been found to be preferable.  相似文献   

20.
This paper describes the measurement of total antimony and antimony species in "real world" mine contaminated sediments using ICPMS and HPLC-ICPMS. Low and high temperature microwave extraction procedures (90 degrees C and 150 degrees C, respectively) using a range of nitric-hydrochloric acid combinations were examined as to their efficacy to extract antimony from six mine contaminated soils and a certified reference material. The use of the higher temperature with nitric-hydrochloric acid (1:2 (v/v)) was suitable to release antimony from sediments and the certified reference material, NIST 2710 Montana soil. Antimony concentrations obtained using this acid mixture were similar to those obtained using a more aggressive extraction with nitric, hydrochloric, perchloric and hydrofluoric acid mixture. A 25 mM citric acid solution at 90 degrees C for 15 min extracted 47-78% of antimony from soils. A Hamilton PRP X-100 anion exchange column with 20 mM EDTA mobile phase, pH 4.5, flow rate 1.5 mL min(-1) and column temperature of 50 degrees C was used to separate antimony species. Column recoveries ranged from 78-104%. The predominant form of antimony was Sb(5+). Little conversion of Sb(5+) occurred (<5%) during extraction, however, significant conversion of Sb(3+) occurred (approximately 36%). The extraction of antimony species with citric acid should be useful in the determination of inorganic antimony available to plants, as plants commonly excrete carboxylic acids, including citric acid, into their rhizospheres to mobilise trace elements for nutritional purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号