首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Independently from its origin, trichloroacetic acid (TCA) as a phytotoxic substance affects coniferous trees. Its uptake, distribution and degradation were thus investigated in the Norway spruce/soil-system using 14C labeling. TCA is distributed in the tree mainly by the transpiration stream. As in soil, TCA seems to be degraded microbially, presumably by phyllosphere microorganisms in spruce needles. Indication of TCA biodegradation in trees is shown using both antibiotics and axenic plants.  相似文献   

2.
[1,2-14C]TCA of a high specific activity (3.7 GBq/mmol) and appropriate radioindicator techniques were used, to study the effect of trichloroacetic acid (TCA) on conifers. Easy uptake of TCA from soil through spruce roots and its further translocation by the transpiration stream up to the needles (where damage of the photosynthetic apparatus occurs) has been proved. During the growth period, after one-shot load of TCA, the uptake was most intensive in current-year needles at first; over an extended period a decrease in the level of [1,2-14C]TCA-derived radioactivity was found in the current-year needles while in older needles (C + 2), the level rose. Symptoms of TCA biodegradation and/or metabolism were found in the plant/soil system under study. During an eight-week exposure significant losses of radioactivity into the atmosphere were noticed, at least a part of them in the form of carbondioxide. The results of these more or less preliminary experiments demonstrated the suitability and advantages of the radioisotopic technique used.  相似文献   

3.
Trichloroacetic acid (TCA) as a phytotoxic substance affects health status of coniferous trees. It is known as a secondary air pollutant (formed by photooxidation of tetrachloroethene and 1,1,1-trichloroethane) and as a product of chlorination of humic substances in soil. Its break-down in soil, however, influences considerably the TCA level, i.e. the extent of TCA uptake by spruce roots. In connection with our investigations of TCA effects on Norway spruce, microbial processes in soil were studied using 14C-labeling. It was shown that TCA degradation in soil is a fast process depending on TCA concentration, soil properties, humidity and temperature. As a result, the TCA level in soil is determined by a steady state between uptake from the atmosphere, formation in soil, leaching and degradation. The process of TCA degradation in soil thus participates significantly in the chlorine cycle in forest ecosystems.  相似文献   

4.
Trichloroacetic acid (TCA, CCl(3)COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 microg l(-1) solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g(-1) dwt) were detected in both foliage and soil-dosed saplings exposed to 100 microg l(-1) TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 microg l(-1) foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health.  相似文献   

5.
Radioisotopes carbon 14 and chlorine 36 were used to elucidate the environmental role of trichloroacetic acid (TCA) formerly taken to be a herbicide and a secondary air pollutant with phytotoxic effects. However, use of 14C-labeling posed again known analytical problems, especially in TCA extraction from the sample matrix. Therefore—after evaluation of available methods—a new procedure using decarboxylation of [1,2-14C]TCA combined with extraction of the resultant 14C-chloroform with a non-polar solvent and its subsequent radiometric measurement was developed. The method solves previous difficulties and permits an easy determination of amounts between 0.4 and 20 kBq (10–500 ng g−1) of carrier-less [1,2-14C]TCA in samples from environmental investigations. The procedure is, however, not suitable for direct [36Cl]TCA determination in chlorination studies with 36Cl. Because TCA might be microbially degraded in soil during extraction and sample storage and its extraction from soil or needles is never complete, the decarboxylation method—i.e. 2 h TCA decomposition to chloroform and CO2 in aqueous solution or suspension in closed vial at 90 °C and pH 4.6 with subsequent CHCl3 extraction—is recommended here, estimated V < 7%. Moreover, the influence of pH and temperature on the decarboxylation of TCA in aqueous solution was studied in a broad range and its environmental relevance is shown in the case of TCA decarboxylation in spruce needles which takes place also at ambient temperatures and might amount more than 10–20% after a growing season. A study of TCA distribution in spruce needles after below-ground uptake shows the highest uptake rate into current needles which have, however, a lower TCA content than older needle-year classes, TCA biodegradation in forest soil leads predominatingly to CO2.  相似文献   

6.
Norway spruce saplings [Picea abies (L.) Karst.] were exposed during four growing seasons to different ozone treatments in open-top chambers: charcoal filtered air (CF), non-filtered air (NF) and non-filtered air with extra ozone (NF+, 1.4xambient concentrations). The CF and NF+ ozone treatments were combined with phosphorous deficiency and drought stress treatments. The total biomass of the trees was harvested at different intervals during the experimental period. The ozone uptake to current-year needles of the Norway spruce saplings was estimated using a multiplicative stomatal conductance simulation model. There was a highly significant correlation between the reduction of total biomass and the estimated cumulative ozone uptake, which did not vary when different thresholds were applied for the rate of ozone uptake. The reduction of the total biomass was estimated to 1% per 10 mmol m(-2) cumulated ozone uptake, on a projected needle area basis.  相似文献   

7.
Photolysis of polycyclic aromatic hydrocarbons (PAHs) sorbed on surfaces of spruce [Picea abies (L.) Karst.] needles under sunlight irradiation was investigated. PAHs were produced by combustion of polyvinyl chloride (PVC), wood, high-density polyethylene (HDPE), and styrene in a stove. The factors of sunlight irradiation on the surfaces of spruce needles were taken into consideration when investigating the kinetic parameters. The photolysis of the 18 PAHs under study follows first-order kinetics. The photolysis half-lives range from 15 h for dibenzo(a,h)anthracene to 75 h for phenanthrene. Photolysis of some PAHs on surfaces of spruce needles may play an important role on the fate of PAHs in the environment.  相似文献   

8.
The nutrient status of the trees and soil in 42 stands of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Scania, South Sweden was followed from 1985 to 1994. Samples from needles taken in winter 1985, 1987, 1990, and 1994, and soils in 1988 and 1993 were analyzed. Concentrations, as well as ratios to N, of K and Cu in needles of both species decreased by approximately 40% from 1985 to 1994. Soil analyses indicate ongoing soil acidification and leaching of mineral nutrients from the soil profile. Together with deposition data and corroboration from modeled scenarios, these data support the recent contention that one consequence of enhanced deposition of N and S will be the development of nutrient imbalances in trees growing in southern Sweden.  相似文献   

9.
For decades, trees have been exposed to atmospheric S pollution (acid rains). They can thus fulfil their S requirements not only via the roots, but also via their needles. However, whether leaf-absorbed S has a different fate from that of root-absorbed S, or may be toxic to the plant, remains uncertain. Norway spruce trees have been contaminated with (35)SO(4)(2-) either via a nutrient solution, or via a spray, and their (35)S distribution has been analysed. In the case of foliar contamination, a high percentage of (35)S(-) was present in the form of SO(4)(2-), both on the surface and inside the youngest needles. In the case of root contamination, the (35)S of the youngest leaves was mainly incorporated into insoluble organic compounds. Older needles showed a different S distribution.  相似文献   

10.
This paper reports the results of total sulphur content, photosynthetic pigments, ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) analysed in current-year needles of Norway spruce (Picea abies (L.) Karst.) in the area influenced by sulphur emissions from the Sostanj Thermal Power Plant (STPP), Slovenia, in the period 1991-2004. Ten differently polluted sampling sites in the emission area of STPP were selected. After desulphurization of emission gases from STPP total sulphur content in needles decreased and vitality parameters of needles increased. Moreover, a strong correlation between the average annual emissions of SO(2) from STPP and average annual sulphur content (increase) or average annual chlorophyll content (decrease) in current-year needles was found. The results showed that spruce needles may be an useful bioindicator for detecting changes in the emission rates of SO(2).  相似文献   

11.
The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb. Calculations of the specific activity in plant material and in the supporting pot soil showed that less than 2% of the Pb content of needles and twigs originates from root uptake and approximately 98% are deposited from the atmosphere. Atmospheric Pb has declined by a factor of 7 from 1980 to 2007 but is still a major pathway of Pb to vegetation and topsoils. The conclusion from the experiment is that the internal circulation of Pb through root uptake, translocation and litterfall, gives an insignificant input of Pb to the forest floor compared to atmospheric deposition.  相似文献   

12.
Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, approximately 1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only approximately 1-2% of above-canopy deposition. On average, approximately 800 microg m(-2) of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of approximately 400 and approximately 300 microg m(-2) for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values ( approximately +/- 50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in addition to uptake from soil via transpiration), and that annualized within-canopy elimination is similar to that in controlled-dosing experiments.  相似文献   

13.
The aim of the study was determination of air pollution impact of the copper smelter in Bor and its surroundings (Serbia) by assessing the suitability of birch (Betula pendula Roth.) and spruce (Picea abies L.) for the purposes of biomonitoring and comparing it with previously published data from the same study area. The concentrations of Cu, Zn, Pb and Mn in leaves/needles, branches, roots and soil were determined. Sampling was performed during 2009 in two zones with high load of air pollution due to copper mining and smelting activities, and one background zone. Metal accumulation and translocation was evaluated in terms of biological factors. In addition, plant enrichment factor was calculated. According to the results, plant foliage was not enriched through soil, which indicates absorption from the air, with both species acting as excluders of Cu, Pb, Zn and Mn. Leaves were more enriched with all the metals than needles, indicating a better response of birch to airborne pollution than spruce. Cluster analysis showed different level of pollution at the sites, while correlations between Cu and Pb obtained by Principal Component Analysis indicated their anthropogenic origin. Regarding previously published results, beside birch leaves, pine needles (which showed higher level of response to pollution compared to linden leaves) could be applied in air biomonitoring surveys near copper smelters.  相似文献   

14.
The effects of artificially applied acid precipitation on growth and nutrient concentrations of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.) seedlings were investigated in a long-term acid irrigation experiment in field conditions. Seedlings of northern and southern origin were planted in boxes containing peat and composted soil rich in nutrients, and sprinkler irrigated with water acidified with nitric and sulphuric acids to pH 3 or pH 4 for periods varying from two to three and a half growing seasons during 1986-1989. Water irrigated (pH 5.4-7.6) and non-irrigated groups of seedlings were also included in the experiment. At the end of the experiment needles, main and lateral shoots and roots were collected from the seedlings for the determination of height growth and biomass partitioning, and for the analysis of S, N, Mg, P, K, Ca, Mn and Fe concentrations. The treatment effects compared to the irrigated control were studied using multivariate analyses of variance and covariance. In the pine seedlings the total dry matter production increased by 25-70% compared with the irrigated controls when the total wet deposition to the seedlings exceeded 67 kg S ha(-1) and 36 kg N ha(-1) (e.g. after two growing seasons' exposure of the pH 3 treatment). The increase was mainly due to an increase in needle dry weight (54-72% greater at pH 3) and root weight (20-65% greater at pH 3), whereas the height growth or shoot weight growth were less affected. The northern provenance pine seedlings responded more clearly to the pH 3 irrigation than the southern ones. The treatments had no consistent effects on any of the growth variables studied in the spruce seedlings, however. The pines had higher root and foliage Ca concentrations as a result of the acid irrigation, whereas in spruce, acid rain decreased the Ca concentration in needles and shoots. Root Mn and Fe concentrations were higher in both species as a result of the pH 3 treatment. A higher soil conductivity and Ca concentration resulted from the prolonged pH 3 treatment. The results strongly support the hypothesis that the long-term growth and nutrient allocation response of conifers to acid precipitation is dependent both on the tree species and on the nutritional status of the soil.  相似文献   

15.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

16.
This paper summarizes and evaluates the main findings of 14 preceding papers related to the joint 14-month tree-exposure experiment carried out by the 'Munich Working Party on Air Pollution' at the GSF, Munich, FRG, from July 1986 to September 1987. The experiment tested the hypothesis that an interaction of ozone/acid mist/soil/extreme climatic conditions is the cause of decline of Norway spruce (Picea abies (L.) Karst.) at higher altitudes of the Inner Bavarian Forest. The main findings of the individual studies are presented and their implications for the hypothesis are discussed. Clear effects of soil and genetic factors (differences between clones), for example on growth and frost resistance were found. Treatment with O(3)/acid mist was shown to have effects on plant biochemistry, physiology, histology/ cytology, and growth. The wide scattering of these effects, and the lack of a consistent pattern of response across all clones does not permits a firm conclusion on the validity of the experimental hypothesis. These effects were not confounded by the nutrient stresses imposed during the initial exposure period and were not found to be cumulative during repeated treatments, as was proposed by the hypothesis. It is concluded that the experimental evidence does not indicate that ozone/acid mist are major factors to explain the Norway spruce decline on acidic sites at higher altitudes of the Inner Bavarian Forest and probably similar forest areas.  相似文献   

17.
McCulloch A 《Chemosphere》2002,47(7):667-686
Suppositions that the trichloroacetic acid (TCA, CCl3C(O)OH) found in nature was a consequence solely of the use of chlorinated hydrocarbon solvents prompted this critical review of the literature on its environmental fluxes and occurrences. TCA is widely distributed in forest soils (where it was rarely used as an herbicide) and measurements suggest a soil flux of 160 000 tonnes yr(-1) in European forests alone. TCA is also produced during oxidative water treatment and the global flux could amount to 55 000 tonnes yr(-1) (from pulp and paper manufacture, potable water and cooling water treatments). By contrast, the yields of TCA from chlorinated hydrocarbon solvents are small: from tetrachloroethene 13 600 tonnes yr(-1) and from 1,1,1-trichloroethane 4300 tonnes yr(-1) on a global basis, at the atmospheric burdens and removal rates typical of the late 1990s. TCA is ubiquitous in rainwater and snow. Its concentrations are highly variable and the variations cannot be connected with location or date. However, there is no significant difference between the concentrations found in Chile and in eastern Canada (by the same analysts), or between Malawi and western Canada, or between Antarctica and Switzerland, nor any significant difference globally between the concentrations in cloud, rain and snow (although local enhancement in fog water has been shown). TCA is present in old ice and firn. At the deepest levels, the firn was deposited early in the 19th century, well before the possibility of contamination by industrial production of reactive chlorine, implying a non-industrial background. This proposition is supported by plume measurements from pulp mills in Finland. TCA is ubiquitous in soils; concentrations are very variable but there are some indications that soils under coniferous trees contain higher amounts. The concentrations of TCA found in plant tissue are region-specific and may also be plant-specific, to the extent that conifers seem to contain more than other species. TCA is removed from the environment naturally. There is abundant evidence that soil microorganisms dehalogenate TCA and it is lost from within spruce needles with a half-life of 10 days. There is also recent evidence of an abiotic aqueous decarboxylation mechanism with a half-life of 22 days. The supposedly widespread effects of TCA in conifer needles are not shown in controlled experiments. At concentrations in the needles of Scots pine similar to those observed in needles in forest trees, changes consequent on TCA treatment of field laboratory specimens were almost all insignificant.  相似文献   

18.
This study examines the effects of exhaust gas exposure on the epistomatal wax structure and mesophyll ultrastructure in needles of Norway spruce (Picea abies (L.) Karst.) seedlings. Stomatal diffusive resistance was also measured. Two independent exhaust gas fumigations were performed: 100 and 200 ppb measured as NO(x), for 10 days and 50, 100 and 200 ppb NO(x) for 19 days. The obstructive effect of exhaust gas exposure on epistomatal wax tubules was apparent. The stomata became covered by flat and solid wax resulting from the structural degradation of the wax crystalloids. Increasing the exhaust gas concentration in the chamber atmosphere exacerbated the degradation of the wax structure. Exhaust gas exposure induced aggregation and electron translucence of plastoglobuli, swelling of thylakoids, increase of cytoplasmic lipids and slight increase of vesiculation of cytoplasm in mesophyll cells of current and previous year needles. These changes were exemplified in current year needles. Damage to the epicuticular waxes and mesophyll ultrastructure of spruce needles most likely reflects the NO(x) and volatile hydrocarbon fraction. The alterations in epicuticular waxes and mesophyll ultrastructure can be related to accelerated senescence of the youngest, photosynthetically active, needle generation. The exhaust gas also resulted in decreased diffusive stomatal resistance at night which indicates that the exhaust gas exposure disturbed the gas exchange of spruce seedlings. The results show that even relatively short-term exposure to realistic concentrations of exhaust gas in the atmosphere can induce rather severe injuries to the needle surface structure as well as ultrastructure at the cellular level.  相似文献   

19.
The amount of catechin and 4-hydroxyacetophenone in the methanolic extract of the Norway spruce needles at the locality Bíly Kríz (Moravian-Silesian Beskydy Mts.) was found in the range 2.8-12.1 mg g(-1) (dry weight) and 0.2-17.7 mg g(-1) (dry weight), respectively. Total amount of catechin (sum of the last three needle year-classes) is statistically higher (p<0.01) in the sparse areas compared to the dense ones and similar trends were recorded for catechin content in current and one-year-old needles. These results may support an idea about primary control of phenolic production by the incident solar radiation, which depends on the social position of the tree and canopy closure degree.  相似文献   

20.
Measurements of leaf wettability (contact angle), amounts of epicuticular wax and of surface dust are reported for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L) Karst) trees growing at 12 sites in Europe from SW Germany to NE Scotland. At each site, three year classes (current year, 1 and 2-year-old) of needles were sampled from the mid-crown of up to 12 trees. Trees were selected at random from two strata, those showing visible decline symptoms (i.e. loss of needles or discoloration) and those apparently healthy. Needles for analysis were taken from apparently healthy (green) shoots in both cases. There were no significant differences between 'declining' and 'healthy' trees within sites, suggesting that leaf surface properties reflect environmental exposure rather than plant response. There were significant differences between sites, particularly for Norway spruce, which may be related to environmental factors including air pollution. Contact angles were consistently smaller at low-altitude sites in Britain and The Netherlands than at high-altitude sites in Germany where forests show decline symptoms. Leaf wettability decreased (contact angles increased) with wax amount and increased with dust amount. Leaf surface properties integrate environmental influences over long periods, and may be useful in identifying sites 'at risk' of developing decline symptoms, but causal relationships cannot be deduced without further direct experimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号