首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 microm) caused by (1) diumal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables. Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 microm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 microm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 microm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 microm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (< 0.1 microm) but diverged increasingly for larger particles (up to 0.445 microm). Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 microm in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at approximately 10 nm (possibly smaller), a shallow minimum at approximately 14 nm, and a second broad peak at approximately 68 nm. The volume distribution was also bimodal, with a broad peak at approximately 200 nm, a minimum at approximately 1.2 microm, and then an upward slope again through the remaining size fractions. A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [> 0.8 air changes per hour (hr(-1))], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

2.
Abstract

Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 μm) caused by (1) diurnal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables.

Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 μm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 μm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 μm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 μm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (<0.1 μm) but diverged increasingly for larger particles (up to 0.445 μm).

Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 um in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at ~10 nm (possibly smaller), a shallow minimum at ~14 nm, and a second broad peak at ~68 nm. The volume distribution was also bimodal, with a broad peak at ~200 nm, a minimum at ~1.2 μm, and then an upward slope again through the remaining size fractions.

A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [>0.8 air changes per hour (hr?1)], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   

3.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

4.
Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 microm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7-2.2 ppm, 3.4-10.0 microg/m3, 1.3-2.0 x 10(5)/cm3, and 30.2-64.6 microg/m3, respectively. For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 x 10(5)/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

5.
Recent studies have attributed toxic effects of ambient fine particulate matter (aerodynamic diameter  2.5 μm; PM2.5) to physical and/or chemical properties rather than total mass. However, identifying specific components or sources of a complex mixture of ambient PM2.5 that are responsible for adverse health effects is still challenging. In order to improve our understanding of source-to-receptor pathways for ambient PM2.5 (links between sources of ambient PM2.5 and measures of biologically relevant dose), integrated inhalation toxicology studies using animal models and concentrated air particles (CAPs) were completed in southwest Detroit, a community where the pediatric asthma rate is more than twice the national average. Ambient PM2.5 was concentrated with a Harvard fine particle concentrator housed in AirCARE1, a mobile air research laboratory which facilitates inhalation exposure studies in real-world settings. Detailed characterizations of ambient PM2.5 and CAPs, identification of major emission sources of PM2.5, and quantification of trace elements in the lung tissues of laboratory rats that were exposed to CAPs for two distinct 3-day exposure periods were completed.This paper describes the physical/chemical properties and sources of PM2.5, pulmonary metal concentrations and meteorology from two different 3-day exposure periods—both conducted at the southwest Detroit location in July 2003—which resulted in disparate biological effects. More specifically, during one of the exposure periods, ambient PM2.5-derived trace metals were recovered from lung tissues of CAPs-exposed animals, and these metals were linked to local combustion point sources in southwest Detroit via receptor modeling and meteorology; whereas in the other exposure period, no such trace metals were observed. By comparing these two disparate results, this investigation was able to define possible links between PM2.5 emitted from refineries and incinerators and biologically relevant dose, which in turn may be associated with observed health effects.  相似文献   

6.
A monitoring campaign was performed in Santiago de Chile during a winter month of 2003 and 2006 (July) using several instruments to measure the size distribution of particulate material. For the first time, the size distribution of ultrafine particles was measured in Santiago, and an estimation of its sources was done by analyzing its temporal variation. The study was performed in three sites; one of them is located in the eastern part of Santiago, a sector with low particle concentration and about 100 m from a busy street. The other site is located in the western part, which is the sector that has the highest concentration of fine and coarse particle matter during winter, also located far from a street. The third site is located within 5 m from the busiest street in Santiago. In all stations traffic is the dominating source for fine and ultrafine particles and the size distribution is peaked towards 60–100 nm (soot mode). Only in the site near the street, it is possible to see a clear peak towards smaller sizes (10–30 nm). The size distribution measurements presented here indicate that aerosol dynamics play a more important role for the Santiago case as compared to cleaner cities in Europe. Changes in the particle size during different hours of the day reflect both variations in meteorological mixing conditions as well as effects of aerosol dynamic processes such as coagulation, condensation and dry deposition. A relative increase in the number of the larger ultrafine particles (d ≥ 70 nm), as compared to the number of smaller particles (d < 70 nm) correlated with wind speed is an indication of pollution transport with aged particles from other parts of the city.  相似文献   

7.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

8.
There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for short-term responses of the respiratory system as observed in several epidemiological studies. However, the available data on ambient particle concentrations in various size ranges are not sufficient to answer this question.Therefore, on 180 days during the winter 1991/92 daily mean size distributions of ambient particles were determined in. Erfurt, a city in Eastern Germany. In the range 0.01–0.3 μm particles were classified by an electrical mobility analyzer and in the range 0.1–2.5 μm by an optical particle counter. From the derived size distributions, number and mass concentrations were calculated.The mean number concentration over this period of time was governed by particles smaller than 0.1 μm (72%), whereas the mean mass concentration was governed by particles in the size range 0.1–0.5 pm (83%). The contribution of particles larger than 0.5 μm to the overall number concentration was negligible and so was the contribution of particles smaller than 0.1 μm to the overall mass concentration. Furthermore, total number and mass concentrations in the range 0.01–2.5 μm were poorly correlated.The results suggest that particles larger than 2.5 μm (or even larger than 0.5 μm) are rare in the European urban environment so that the inhalation of these particles is probably not relevant for human health. Since particle number and mass concentrations can be considered poorly correlated variables, more insight into health-related aspects of particulate air pollution will be obtained by correlating respiratory responses with mass and number concentrations of ambient particles below 0.5 μm.  相似文献   

9.
Chemical coupling between ammonia, acid gases, and fine particles   总被引:2,自引:0,他引:2  
The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.  相似文献   

10.
Particle size distribution is important for understanding the sources and effects of atmospheric aerosols. In this paper we present particle number size distributions (10 nm–10 μm) measured at a suburban site in the fast developing Yangtze River Delta (YRD) region (near Shanghai) in summer 2005. The average number concentrations of ultrafine (10–100 nm) particles were 2–3 times higher than those reported in the urban areas of North America and Europe. The number fraction of the ultrafine particles to total particle count was also 20–30% higher. The sharp increases in ultrafine particle number concentrations were frequently observed in late morning, and the particle bursts on 5 of the 12 nucleation event days can be attributed to the homogeneous nucleation leading to new particle formation. The new particle formation events were characterized with a larger number of nucleation-mode particles, larger particle surface area, and larger condensational sink than usually reported in the literature. These suggest an intense production of sulfuric acid from photo-oxidation of sulfur dioxide in the YRD. Overall, the growth rate of newly formed particles was moderate (6.4 ± 1.6 nm h?1), which was comparable to that reported in the literature.  相似文献   

11.
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.  相似文献   

12.
Continuous measurements of particle size distributions of 3-407 nm were collected from August 2002 to July 2004 at the Fresno Supersite to understand their number concentrations, size distributions, and formation processes. Measurements for fine particulate matter (PM2.5) mass, sulfate (SO4(2-)), nitrate (NO3-), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and meteorological data (wind speed, wind direction, temperature [T], relative humidity [RH], and solar radiation) were used to determine the causes of nanoparticle (3-10 nm) and ultrafine (10-100 nm) particle events. These events were found to be divided into four types: (1) 3- to 10-nm morning nucleation; (2) 10- to 30-nm morning traffic; (3) 10- to 30-nm afternoon photochemical; and (4) 50- to 84-nm evening home heating, including residential wood combustion. Intense examples of the first type (>10(4) number [#]/cm3) were observed on 29 days, nearly always during the summer. The second type of event was observed on more than 73 days and occurred throughout the year. The third type was observed on 36 days, from spring through summer. The fourth type was found on 109 days, all of them during the winter. Although sulfur dioxide (SO2) emissions in Central California are low, the small residual amounts in gasoline and diesel fuel are apparently sufficient to initiate nucleation events. These were measured in the morning, soon after the shallow surface inversion coupled with layers aloft where nucleation probably was initiated. PM2.5 concentrations were poorly correlated with nanoparticle number.  相似文献   

13.
A factor analytic model has been applied to resolve and apportion particles based on submicron particle size distributions downwind of a United States-Canada bridge in Buffalo, NY. The sites chosen for this study were located at gradually increasing distances downwind of the bridge complex. Seven independent factors were resolved, including four factors that were common to all of the five sites considered. The common factors were generally characterized by the existence of two or more number and surface area modes. The seven factors resolved were identified as follows: fresh tail-pipe diesel exhaust, local/street diesel traffic, aged/evolved diesel particles, spark-ignition gasoline emissions, background urban emissions, heavy-duty diesel agglomerates, and secondary/transported material. Submicron (<0.5 microm) and ultrafine (<0.1 microm) particle emissions downwind of the bridge were dominated by commercial diesel truck emissions. Thus, this study obtained size distinction between fresh versus aged vehicle exhaust and spark-ignition versus diesel emissions based on the measured high time-resolution particle number concentrations. Because this study mainly used particles <300 nm in diameter, some sources that would usually exhibit number modes >100 nm were not resolved. Also, the resolved profiles suggested that the major number mode for fresh tailpipe diesel exhaust might exist below the detection limit of the spectrometer used. The average particle number contributions from the resolved factors were highest closest to the bridge.  相似文献   

14.
A summer air quality monitoring campaign focusing on the evolution of ultrafine (<180 nm in diameter) particle concentrations was conducted at an urban site in Los Angeles during June–July 2006. Previous observations suggest that ultrafine aerosol at this site are generally representative of the Los Angeles urban environment. Continuous and intermittent gas and aerosol measurements were made over 4 weeks with consistent daily meteorological conditions. Monthly averages of the data suggest the strong influence of commute traffic emissions on morning observations of ultrafine particle concentrations. By contrast, in the afternoon our measurements provide evidence of secondary photochemical reactions becoming the predominant formation mechanism of ultrafine aerosols. The ultrafine number concentration peak occurs in the early afternoon, before the maximum ozone concentration is observed. The source of this offset is unknown and requires further investigation. It is possible that the chemical mechanisms responsible for secondary organic aerosol formation evolve as atmospheric conditions change and/or secondary semi-volatile components of the aerosol re-volatilize due to the elevated peak temperatures observed (ca. 30–35 °C) combined with the increased atmospheric dilution during that time. Measurements of the volatility of the ultrafine aerosol are consistent with this interpretation as overall volatility increases in the afternoon and there is less evidence of external mixing. Composition data presented in the companion paper support these conclusions [Ning et al., 2007. Daily variation in chemical characteristics of urban ultrafine aerosols and inference of their sources. Environmental Science and Technology, in press].  相似文献   

15.
Total number concentrations, number concentrations of ultrafine (0.01–0.1 μm) and accumulation (0.1–0.5 μm) particles, as well as mass concentration of PM2.5 particles and blackness of PM2.5 filters, which is related to Black Smoke were simultaneously monitored in three European cities during the winter period for three and a half months. The purpose of the study was to describe the differences in concentration levels and daily and diurnal variations in particle number and mass concentrations between European cities. The results show statistically significant differences in the concentrations of PM2.5 and the blackness of the PM2.5 filters between the cities, but not in the concentrations of ultrafine particles. Daily PM2.5 levels were found to be poorly correlated with the daily total and ultrafine number concentrations but better correlated with the number concentration of accumulation particles. According to the principal component analysis airborne particulate pollutants seem to be divided into two major source categories, one identified with particle number concentrations and the other related to mass-based information. The present results underline the importance of using both particle number and mass concentrations to evaluate urban air quality.  相似文献   

16.
Over the past several years, numerous studies have linked ambient concentrations of particulate matter (PM) to adverse health effects, and more recent studies have identified PM size and surface area as important factors in determining the health effects of PM. This study contributes to a better understanding of the evolution of particle size distributions in exhaust plumes with unconfined dilution by ambient air. It combines computational fluid dynamics (CFD) with an aerosol dynamics model to examine the effects of different streamlines in an exhaust plume, ambient particle size distributions, and vehicle and wind speed on the particle size distribution in an exhaust plume. CFD was used to calculate the flow field and gas mixing for unconfined dilution of a vehicle exhaust plume, and the calculated dilution ratios were then used as input to the aerosol dynamics simulation. The results of the study show that vehicle speed affected the particle size distribution of an exhaust plume because increasing vehicle speed caused more rapid dilution and inhibited coagulation. Ambient particle size distributions had an effect on the smaller sized particles (approximately 10 nm range under some conditions) and larger sized particles (>2 microm) of the particle size distribution. The ambient air particle size distribution affects the larger sizes of the exhaust plume because vehicle exhaust typically contains few particles larger than 2 microm. Finally, the location of a streamline in the exhaust plume had little effect on the particle size distribution; the particle size distribution along any streamline at a distance x differed by less than 5% from the particle size distributions along any other streamline at distance x.  相似文献   

17.
Abstract

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 μm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7?2.2 ppm, 3.4?10.0 μg/m3, 1.3?2.0 × 105/cm3, and 30.2?64.6 μ/m3, respectively.

For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6–220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 × 105/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   

18.
The size distribution of particles has been studied in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and a comparison with black carbon was performed. Two sites are located near busy streets in Santiago and the other site is located in a rural area about 40 km west of Santiago with little influence from vehicles, but large influence from wood burning. The campaign lasted 1 or 2 weeks in each site. We have divided the particle size measurements into four groups (10–39 nm, 40–62 nm, 63–174 nm, and 175–700 nm) in order to compare with the carbon monitor. In the sites near the street, black carbon has a high correlation (R ? 0.85) with larger particles (175–700 nm). The correlation decreased when black carbon was compared with smaller particles, having very small correlation with the smallest sizes (10–39 nm). In the rural site, black carbon also has a high correlation (R = 0.86) with larger particles (175–700 nm), but the correlation between black carbon and the finest particles (10–39 nm) decreases to near 0. These measurements are an indication that wood burning does not generate particles smaller than ?50 nm. In the urban sites, particle size distribution is peaked toward smaller particles (10–39 nm) only during rush hours, but at other times, particles size distribution is peaked toward larger sizes. When solar radiation was high, evidence of secondary particle formation was seen in the rural site, but not in the urban sites. The correlation between the number of secondary particles and solar radiation was R2 = 0.46, indicating that it there may be other variables that play a role in ultrafine particle formation.
Implications:A study of the size distribution of particles and black carbon concentration in two street sites and one rural site shows that in the last site the number of particles ultrafine particles (d < 40 nm) is 10 times lower but the number of larger particles is about 2 times lower. Thus, the rural site has less of the particles that are more dangerous to health. The number of ultrafine particles is mostly associated with traffic, while the number of larger particles is associated with wood burning and other sources. Wood burning does not generate particles smaller than ?50 nm.  相似文献   

19.
A mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cm−3, with additional peak particle number concentrations of up to 400 000 cm−3. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters <50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.  相似文献   

20.
总结了近年来不同地区对不同环境下大气超细颗粒物的观测和扩散模拟研究进展。大量的观测研究结果表明,大气超细颗粒物的时空分布、组成特征、形成和成长的特性因观测地区的不同而存在很大差异,受气象因素和局部污染源的影响很大;其来源主要包括固定、移动燃烧源的直接排放和大气中颗粒成核现象,前一种来源一般是局部的,而后一种来源则是区域性的。目前,大多数关于大气超细颗粒物扩散的模拟研究都是针对其质量浓度的,对其数浓度扩散的模拟研究主要集中在小范围(机动车排放烟云的研究方面),在城市区域范围上的研究和应用还很少。最后,探讨和展望了大气超细颗粒物今后的主要研究方向和研究中面临的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号