首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The environmental pollution problems prevalent in gulf coast estuaries are a cause of great concern to those in water quality management. This paper outlines the dominant characteristics which affect the properties of these estuaries including geography, tide and current effects, wind effects, salinity and density regime, nature and level of waste discharge, low inflow levels, dredging effects and present quality levels. Two basic levels of analytical modeling which are useful in water quality management are presented. The first is a relatively crude completely mixed estuarine model which permits economical evaluation of varying parameters. The second is a very general steady state model which permits analysis of stratified systems. The ESTPOL computer language designed to simplify the use of the steady state model is described. The practical use of the analytical models as management tools for the solution of Texas Estuarine quality problems is demonstrated.  相似文献   

2.
ABSTRACT. The Texas Water Development Board, the principal water resource planning agency of the State, has been conducting extensive estuarine data collection activities and associated research to determine the required quantity and quality of fresh water inflows necessary to maintain various environmental conditions in Texas estuaries to preserve the estuarine ecosystems. These activities are a consequence of a statutory directive to the Board to make provisions in its State Water Plan for the effects of upstream water resource development on the associated estuaries. This paper reports on the results of the first phase of an extensive estuarine research project. The objectives of the research project are to (1) define the interrelationships between estuarine ecosystems and fresh water and nutrient inflows, and (2) develop and test quantitative simulation techniques which describe these relationships. In order to accomplish the first objective, physical and chemical water quality data and biological data on the estuarine ecosystems are being collected, compiled and analyzed. The second objective is being satisfied by the development of hydrodynamic and ecologic simulation models of the estuarine environment.  相似文献   

3.
A eutrophication assessment method was developed as part of the National Estuarine Eutrophication Assessment (NEEA) Program. The program is designed to improve monitoring and assessment of eutrophication in the estuaries and coastal bays of the United States with the intent to guide management plans and develop analytical and research models and tools for managers. These tools will help guide and improve management success for estuaries and coastal resources. The assessment method, a Pressure-State-Response approach, uses a simple model to determine Pressure and statistical criteria for indicator variables (where applicable) to determine State. The Response determination is mostly heuristic, although research models are being developed to improve that component. The three components are determined individually and then combined into a single rating. Application to several systems in the European Union (E.U.), specifically in Portugal, shows that the method is transferable, and thus is useful for development of management measures in both the Unites States and E.U. This approach identifies and quantifies the key anthropogenic nutrient input sources to estuaries so that management measures can target inputs for maximum effect. Because nitrogen is often the limiting nutrient in estuarine systems, examples of source identification and quantification for nitrogen have been developed for 11 coastal watersheds on the U.S. east coast using the WATERSN model. In general, estuaries in the Northeastern United States receive most of their nitrogen from human sewage, followed by atmospheric deposition. This is in contrast to some watersheds in the Mid-Atlantic (Chesapeake Bay) and South Atlantic (Pamlico Sound), which receive most of their nitrogen from agricultural runoff. Source identification is important for implementing effective management measures that should be monitored for success using assessment methods, as described herein. For instance, these results suggest that Northeastern estuaries would likely benefit most from improved sewage treatment, where as the Mid and South Atlantic systems would benefit most from agricultural runoff reductions.  相似文献   

4.
Remote Sensing of Landscape-Level Coastal Environmental Indicators   总被引:5,自引:1,他引:4  
Advances in technology and decreases in cost are making remote sensing (RS) and geographic information systems (GIS) practical and attractive for use in coastal resource management. They are also allowing researchers and managers to take a broader view of ecological patterns and processes. Landscape-level environmental indicators that can be detected by Landsat Thematic Mapper (TM) and other remote sensors are available to provide quantitative estimates of coastal and estuarine habitat conditions and trends. Such indicators include watershed land cover, riparian buffers, shoreline and wetland changes, among others. With the launch of Landsat 7, the cost of TM imagery has dropped by nearly a factor of 10, decreasing the cost of monitoring large coastal areas and estuaries. New satellites, carrying sensors with much finer spatial (1-5 m) and spectral (200 narrow bands) resolutions are being launched, providing a capability to more accurately detect changes in coastal habitat and wetland health. Advances in the application of GIS help incorporate ancillary data layers to improve the accuracy of satellite land-cover classification. When these techniques for generating, organizing, storing, and analyzing spatial information are combined with mathematical models, coastal planners and managers have a means for assessing the impacts of alternative management practices.  相似文献   

5.
In conjunction with socioeconomic development in watersheds, increasingly challenging problems, such as scarcity of water resources and environmental deterioration, have arisen. Watershed management is a useful tool for dealing with these issues and maintaining sustainable development at the watershed scale. The complex and uncertain characteristics of watershed systems have a great impact on decisions about countermeasures and other techniques that will be applied in the future. An optimization method based on scenario analysis is proposed in this paper as a means of handling watershed management under uncertainty. This method integrates system analysis, forecast methods, and scenario analysis, as well as the contributions of stakeholders and experts, into a comprehensive framework. The proposed method comprises four steps: system analyses, a listing of potential engineering techniques and countermeasures, scenario analyses, and the optimal selection of countermeasures and engineering techniques. The proposed method was applied to the case of the Lake Qionghai watershed in southwestern China, and the results are reported in this paper. This case study demonstrates that the proposed method can be used to deal efficiently with uncertainties at the watershed level. Moreover, this method takes into consideration the interests of different groups, which is crucial for successful watershed management. In particular, social, economic, environmental, and resource systems are all considered in order to improve the applicability of the method. In short, the optimization method based on scenario analysis proposed here is a valuable tool for watershed management.  相似文献   

6.
7.
For the past 11 years the annual Shellfish Biology Seminar at Milford CT has provided a unique forum for aquaculture scientists and industry officials to exchange information about estuaries facing increased pollution problems, especially Long Island Sound and the Great South Bay. Because these two areas are so rich in productivity and diversity, fish and shellfish farmers utilize their waters, shellfish beds, and shore land for hatcheries and grow-out facilities. These individuals seek better management of the coastal estuarine environment and its resources, providing a working example of environmental stewardship. In aquaculture, good science is required to understand the complex variables and interaction of estuarine currents, tides, temperature, and cycles of reproduction. Aquaculturists are beginning to understand the need for specific nutrients and how the wastes of one species can be utilized for enhanced production of another species. Over the years, this meeting has formed an amalgam of both the aquaculture industry and research scientists where both groups foster mutual environmental concern. Science is able to focus on the theoretical aspects of pollutant damage. while the aquaculture industry is able to define the problem and need for assistance to eliminate pollutants from their crops—shellfish and finfish. Overfishing is not an issue at these meetings, as the group accepts the damage already done to wild resources and seeks new technologies to grow food sources under controlled and stable market conditions. Therefore, it could be said that the seminar serves as a meeting ground where the theoretical knowledge of scientific study finds practical application in the industry and is fueled by the needs of that industry. This ideal blend of the two groups produces better management of the resource and a safer environment—the goal of stewardship.  相似文献   

8.
Conventional approaches to evaluation of environmental programs have tended to limit themselves to restricted measures of program effectiveness. This paper shows how a social learning approach can be incorporated into evaluating public environmental programs. A social learning approach is particularly suited to complex environmental challenges which are inherently difficult to understand, predict, and manage, thus complicating the evaluation process. The paper presents an Australian case study of dryland salinity management where there are major knowledge barriers impeding conventional management techniques. The research presented in this paper focused on evaluating a public demonstration program to track its impact through its design, implementation, and monitoring phases. The paper shows that, by incorporating social learning principles and practices, program evaluation can promote collective action, critical reflection, and increased knowledge to underpin improved environmental management.  相似文献   

9.
Traditionally, environmental issues and concerns have been viewed as a constraint to businesses. This has resulted in environmental managers relying heavily on a reactive, compliance-based approach to justify change. Businesses are now recognizing that efficient management in the environmental arena can benefit the entire company and open new opportunities for increased profits. Managers have acknowledged that environmental issues can be integrated into daily business trends and activities. Not only does sound environmental management decrease liability, but also in current markets a “green” image can attract investors and customers. This article shows how one tool that progressive companies are focusing attention on—environmental performance indicators—is being used to convey the current status of environmental issues and improve the management of these issues for the benefit of the company as well as the environment.  相似文献   

10.
The traditional factors used to determine safe yield of a groundwater basin (water supply, economics, water quality and water rights) do not include environmental effects. Because of the unique estuarine ecosystems associated with many coastal aquifers, environmental effects should be included in the determination of the safe yield of these aquifers. Controlled saline-water intrusion should be considered as a management tool in coastal aquifers. Artificial aquifer recharge using treated wastewater may be used to increase the safe yield of a coastal aquifer system while preserving the ecology of the coastal ecosystems.  相似文献   

11.
The potential impacts of climate change are varied and highly uncertain, and pose a significant challenge to agencies charged with managing environmental risks. This paper presents a comprehensive and structured Mental Modeling approach to elicit, organize and present relevant information from experts and stakeholders about the factors influencing environmental risk management in the face of climate change. We present and review an initiative undertaken by the United States Army Corps of Engineers (USACE) to characterize climate change challenges to USACE environmental risk management activities, and to identify gaps with respect to science, engineering, and organizational processes for addressing these challenges. By employing Mental Modeling, the research has characterized the influences of climate change on USACE environmental risk management, and aggregating recommendations from 28 experts. In addition, the study identifies the most important opportunities to improve organizational response to climate change, ranging from focused research and development of technical capabilities to broad paradigm shifts and systemic organizational improvements within the USACE environmental risk management programs. This study demonstrates that Mental Modeling is a useful tool for understanding complex problems, identifying gaps, and formulating strategies, and can be used by a multitude of organizations and agencies.  相似文献   

12.
A large number of studies have documented 20th century climate variability and change at the global, hemispheric, and regional levels. However, understanding the implications of climate change for environmental management necessitates information at the level of the ecosystem. Historical monitoring data from the Chesapeake Bay estuary were used to identify temporal patterns of estuarine temperature anomalies in the surface (1 m) and subsurface (15 m) between 1949 and 2002. Data indicated a trend in surface and subsurface warming of +0.16°C and +0.21°C per decade, respectively, driven by warming during winter and spring. These trends suggest warming of the estuary since the mid-20th century of approximately 0.8–1.1°C. Estuarine temperatures correlated well with other independent data records for sea surface and surface air temperatures in the region and to a lesser extent, the northern hemisphere. Gross long-term temperature variability in the estuary was consistent with North Atlantic climate variability associated with the prolonged positive North Atlantic Oscillation/Arctic Oscillation and increased anthropogenic radiative forcing, although localized environmental drivers likely are important as well. A simple spatial analysis revealed strong seasonal latitudinal and longitudinal gradients in estuarine temperature as well as a north–south gradient in long-term temperature trends. Continued warming of the estuary will have important implications for ecosystem structure and function as well as attempts to manage existing challenges such as eutrophication and benthic hypoxia. However, such management efforts must be cognizant of the effects of various climate and nonclimate drivers of environmental variability and change operating over different spatial and temporal scales.Published online  相似文献   

13.
Climate change poses many challenges for ecosystem and resource management. In particular, coastal planners are struggling to find ways to prepare for the potential impacts of future climate change while dealing with immediate pressures. Decisions on how to respond to future risks are complicated by the long time horizons and the uncertainty associated with the distribution of impacts. Existing coastal zone management approaches in the UK either do not adequately incorporate changing stakeholder preferences, or effectively ensure that stakeholders are aware of the trade-offs inherent in any coastal management decision. Using a novel method, scenario-based stakeholder engagement, which brings together stakeholder analysis, climate change management scenarios and deliberative techniques, the necessary trade-offs associated with long term coastal planning are explored. The method is applied to two case studies of coastal planning in Christchurch Bay on the south coast of England and the Orkney Islands off the north coast of Scotland. A range of conflicting preferences exist on the ideal governance structure to manage the coast under different climate change scenarios. In addition, the results show that public understanding of the trade-offs that have to be made is critical in gaining some degree of public support for long term coastal decision-making. We conclude that scenario-based stakeholder engagement is a useful tool to facilitate coastal management planning that takes into account the complexities and challenges of climate change, and could be used in conjunction with existing approaches such as the Shoreline Management Planning process.  相似文献   

14.
Estuarine dredge and fill activities: A review of impacts   总被引:1,自引:0,他引:1  
Dredge and fill activities in estuaries have many environmental effects, most, although not all, of them deleterious. These effects include reduced light penetration by increased turbidity; altered tidal exchange, mixing, and circulation; reduced nutrient outflow from marshes and swamps; increased saltwater intrusion; and creation of an environment highly susceptible to recurrent low dissolved oxygen levels. Coral, oysters, and barnacles are particularly vulnerable to the effects of siltation. Both estuarine flora and fauna may be harmed by contaminants released into the water column by dredging operations. Ways to mitigate the effects of dredge and fill operations include careful pre- and post-construction environmental studies; use of bridging to create roadbeds where coastal wetlands cannot be avoided; use of a turbidity diaper and other means to control turbidity; dredging during periods of low benthic populations or during tides that would carry coarser sediments away from productive areas such as oyster reefs; and thoughtful disposal of spoil, such as locating spoil sites on the uplands with proper diking.  相似文献   

15.
Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.  相似文献   

16.
This article presents several case studies in southwest Germany, which aimed to support land use management decisions by a process-oriented statistical upscaling of point-related environmental monitoring data to the landscape scale. When techniques of data subsetting were used in a sensible way and corresponding to the appropriate scale for the evaluation envisaged, multiple linear regression offered a data mining technique which was able to spatially predict relatively complex environmental patterns with parsimonious, interpretable and accurate models, whereby different evaluation scales were best represented by different DTM resolutions. Scenario models based upon the regression formulas were a valuable tool for visualizing management options and evaluating management impacts (tree species selection) on soil functions (carbon storage), which qualifies the presented methodology as a useful aid in decision making. Such upscaling techniques may be used for forecasting long-term effects of ecosystem management, but they provided no information on temporal dynamics. Therefore, time trends of point information on soil solution data were scaled by linking them to soil chemical data which was available in higher spatial resolution, using both statistical and process-oriented methods.  相似文献   

17.
生命周期评价是评价产品、工艺或活动(服务)整个生命周期阶段有关环境负荷,进而辨识和评价减少环境影响机会的一种非常有用的工具。将生命周期评价应用于固体废物环境管理,无疑对于我国建立科学化的固体废物环境管理模式具有十分重要的作用。本文对生命周期评价的定义、主要阶段、应用工具、特点进行了阐述,并对生命周期评价如何应用于我国固体废物环境管理进行了探讨。  相似文献   

18.
19.
Although climate change risks have been studied for a number of economic sectors, banking has received relatively little attention. The paper proposes a methodology and an associated decision-support tool for quantifying, in monetary terms, the risks for banks from the exposure of their loan recipients and/or applicants to climate change. The framework and tool are applied to a case study based on input from a Greek bank; results indicate that climate change risks for banks are considerable, and thus decision makers need to estimate their magnitude and possibly consider these within the credit management process, and in environmental planning.  相似文献   

20.
迅速的工业化进程为我国带来了巨大的经济增长,但其引发的资源和环境问题也日益突出,为应对这一严峻挑战,我国开始转变发展思路,推行绿色发展的发展理念。鉴于绿色发展过程中经济、资源、环境多系统之间存在复杂的相互作用,本研究采用系统动力学方法构建了中国经济—资源—环境的动态模型,并在模型有效性的基础上通过五种典型发展模式对政策进行仿真,进而对不同模式未来的发展趋势进行分析。结果表明:加大环保、能源设备更新投资,促进环境友好型、资源节约型社会建设,是我国实现绿色发展的必由之路;绿色发展过程中还要注重各系统间的协调发展,从整体层面制定绿色发展政策;同时,政府还要关注绿色发展的文化建设,促进公众生活和消费方式的绿色转型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号