首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of cement based materials will be widespread in the long-term management of radioactive materials in the United Kingdom. One of the applications could be the Nirex reference vault backfill (NRVB) as an engineered barrier within a deep geological repository. NRVB confers alkaline conditions, which would provide a robust chemical barrier through the control of the solubility of some key radionuclides, enhanced sorption and minimised corrosion of steel containers. An understanding of the dissolution of C-S-H gels in cement under the appropriate conditions (e.g., saline groundwaters) is necessary to demonstrate the expected evolution of the chemistry over time and to provide sufficient cement to buffer the porewater conditions for the required time. A programme of experimental work has been undertaken to investigate C-S-H gel dissolution behaviour in sodium chloride solutions and the effect of calcium/silicon ratio (C/S), temperature and cation type on this behaviour. Reductions in calcium concentration and pH values were observed with samples equilibrated at 45 degrees C compared to those prepared at 25 degrees C. The effect of salt cation type on salt-concentration dependence of the dissolution of C-S-H gels was investigated by the addition of lithium or potassium chloride in place of sodium chloride for gels with a C/S of 1.0 and 1.8. With a C/S of 1.0, similar increases in dissolved calcium concentration with increasing ionic strength were recorded for the different salts. However, at a C/S of 1.8, anomalously high calcium concentrations were observed in the presence of lithium.  相似文献   

2.
The performance assessment of high level radioactive waste disposal has emphasized the role of colloids in the migration of radionuclides in the geosphere. Previous literature [Nagasaki S, Tanaka S, Suzuki A. Fast transport of colloidal particles through quartz-packed columns. J. Nucl. Sci. Technol. 1975;30(11):1136] indicates that owing to hydrodynamic chromatography the colloid velocity may not be equal to that of groundwater. Using hydrodynamic chromatography, this work investigates the effects of the size of colloidal particles on the radionuclide migration facilitated by colloids in a single fractured porous rock. Also, a methodology is proposed to develop a predictive model to assess transport within the fracture rock as well as various other phenomenological coefficients, particularly the size of colloidal particles. In addition, a fully developed concentration profile for non-reactive colloids in the fracture is developed to elucidate hydrodynamic chromatography of colloids in geological media. The external forces acting on colloidal particles hypothesized in the model proposed herein include inertial force, van der Waals attractive force, double layer force as well as gravitational force. The dispersion coefficient of colloids and the distribution coefficient for radionuclides with colloids are also considered as they pertain to the size of the colloid. In addition, the size distributions of colloids are utilized to investigate the effects of polydispersed colloids.  相似文献   

3.
The distribution between hardened cement paste and cement pore water of selected concrete admixtures (BZMs), i.e., sulfonated naphthalene-formaldehyde condensate (NS), lignosulfonate (LS) and a gluconate-containing plasticiser used at the Paul Scherrer Institute for waste conditioning, was measured. Sorption data were fitted to a single-site Langmuir isotherm with affinity constants K=(19+/-4)dm(3)g(-1) for NS, K=(2.1+/-0.6) dm(3)g(-1) for LS and sorption capacities q=(81+/-16)g kg(-1) for NS, q=(43+/-8)g kg(-1) for LS. In the case of gluconate, a two-site Langmuir sorption model was necessary to fit the data satisfactorily. Sorption parameters for gluconate were K(1)=(2+/-1)x10(6)dm(3)mol(-1) and q(1)=(0.04+/-0.02)mol kg(-1) for the stronger binding site and K(2)=(2.6+/-1.1)x10(3)dm(3)mol(-1) and q(2)=(0.7+/-0.3)mol kg(-1) for the weaker binding site. Desorption of these BZMs from cement pastes and pore water in cement specimens prepared in the presence of the BZMs were then used to test the model. It was found that only minor parts of NS and LS could be mobilised as long as the cement composition was intact, whereas the sorption of gluconate was found to be reversible. The Langmuir model makes valuable predictions in the qualitative sense in that the pore water concentration of the BZMs is reduced by several orders of magnitude as compared to the initial concentrations. In view of the necessity for conservative predictions used in the safety analysis for disposal of radioactive waste, however, the predictions are unsatisfactory in that the measured pore water concentrations of NS and LS were considerably larger than the predicted values. This conclusion does not apply for gluconate, because its concentration in cement pore water was below the detection limit of approximately 50 nM.  相似文献   

4.
This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.  相似文献   

5.
The technical properties of cement mortars containing natural fine aggregate that is replaced by lead blast furnace slag at 25 and 35% level were assessed at fixed water-to-cement (W/C) ratio and at fixed flow table value. The leachabilities of some toxic elements from the cement mortars were also assessed to test the environmental suitability of the slag for use in preparation of cement mortar. At fixed W/C ratio, the strength of the mortar decreased with increase of the slag content. On the other hand, at fixed consistency, strength increased with increasing slag content in the mortar composition. The concentrations of some toxic elements in the leachates collected from the mortars containing slag were slightly higher than for the control mortar, but the concentrations in the leachates remained within the regulatory limits for recycling in construction applications. For most elements, leaching from a mortar containing 35% of slag was similar to that from a mortar containing 25% of slag. Therefore, 35% of natural sand can be beneficially replaced with Pb slag to produce cement mortar without affecting the mechanical and leaching properties studied in this work.  相似文献   

6.
The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.  相似文献   

7.
To provide reliable K(d) data for Cs required for the performance assessment of cement-based radioactive waste repositories, two complementary approaches were followed. First, Cs sorption was determined on a range of hydrated cement paste (HCP) and mortar samples of CEM I and CEM V for different degradation states and solution compositions, as well as on some single mineral phases. Second, a surface complexation-diffuse layer model previously developed by Pointeau et al. [Pointeau, I., Marmier, N., Fromage, F., Fedoroff, M., Giffaut, E., 2001. Cs and Pb uptake by CSH phases of hydrated cement. Material Research Society Symposium Proceedings, 663, 105-113] for Cs sorption on synthetic CSH phases was simplified to facilitate its application to whole HCP and mortars or concrete, following re-assessment of the model parameters. All measurements were compared with model predictions. The sorption data obtained on the different solid phases as a function of conditions corroborate that CSH minerals are the main sorbing phase for Cs in HCP. The data also clearly show the important influence of pH and the dissolved concentration of Na, K and Ca on K(d). It is further suggested that a decrease of pH is concomitant with a decrease of the Ca/Si ratio and a corresponding increase in surface sites with high affinity for Cs and, thus, K(d). Elevated concentrations of cations able to compete with Cs for these sites lead to a decrease of K(d), on the other hand. The simplified model was applied to the sorption measurements performed within this study as well as to a variety of literature data, mainly K(d) values for a variety of fresh HCP and mortar or concrete samples based on different samples of Ordinary Portland Cement as well as blended cements. The results show that the model can be applied reasonably well to a very large variety of conditions in terms of solid and solution compositions that cover a range of K(d) values from 10(-4) to ca. 3.2m(3)/kg. The large scatter typically observed for Cs sorption, especially on fresh HCP samples prepared from different formulations, can be explained quantitatively by the variable concentrations of Na and K in the respective solutions, which compete with Cs for fixation sites. On the other hand, the comparatively uniform conditions in degraded HCP typically render the prediction of K(d) values less uncertain than in case of fresh HCP.  相似文献   

8.
A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials.  相似文献   

9.
A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03x10(-10) to 4.96x10(-9)cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60x10(-13) to 1.05x10(-11)cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.  相似文献   

10.
Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.  相似文献   

11.
12.
The purpose of this study was to examine the relationship between the concentration of boron (B) and some other selected trace elements in soil solution as effected by hydrogen ion activity within the normal pH range for acidic soils commonly amended with agricultural limestone and, alternatively, alkaline fly ash. Sluiced alkaline fly ash was applied to an acidic, clay textured soil at rates equivalent to 0, 42, 84, 125 and 167 tonne ha-1 based on the soil lime requirement. After wheat was grown and harvested the soil-ash mixtures were maintained at field capacity moisture content for an additional 4 months before pore water samples were extracted by immiscible displacement. The total concentrations of Co, Cr, Fe, V and Zn in the ash treated soils increased by < 10% at the highest application rate of ash, the content of Cu was increased by 13% and B by 38%. Only the concentration of boron increased appreciably in the pore water extracts. Release of B from the ash was correlated with the solubility behaviour of Ca and Mg, and not with the dissolution of glass phases in the ash. Speciation and adsorption calculations for the extracts were carried out using the program MINTEQ. Common Ca, Mg and Na borate minerals were undersaturated with respect to the equilibrated solutions. Application of the constant capacitance model to the adsorption of B on mineral surfaces suggested that adsorption had little effect on total dissolved B at pH values below 6.0. Predicted concentrations of B in solutions, equilibrated with calcite in a subsurface horizon, were up to 10.6 mg dm-3; more than double the recommended maximum concentration for B (5mg dm-3) in potable water in Ontario.  相似文献   

13.
Solidification of low-level-radioactive (LLW) resin was optimized using Taguchi analytical methodology. The ingredients in LLW mortar which caused the solidification of cement were evaluated through consecutive measurements of the effects of various concentrations of ingredients. Samples selected according to Taguchi's method were separated into 18 different categories and measured at the 7th, 21st, and 28th day after fabrication on developing effects. Evaluations of the various samples focused on whether the compressive and bending strength fulfilled the special criteria of the Taiwan Power Company (TPC). Similar results indicated that both furnace slag and fly ash were the dominant material resulting from the solidification of LLW mortar. The superior combination was obtained as furnace slag 24 wt.%, fly ash 24 wt.%, and cement 8 wt.% to mix 24 wt.% of resin with 20 wt.% of water, to fulfill the contemporary requirements of TPC.  相似文献   

14.
In this work, the utilization of shredded waste Poly-ethylene Terephthalate (PET) bottle granules as a lightweight aggregate in mortar was investigated. Investigation was carried out on two groups of mortar samples, one made with only PET aggregates and, second made with PET and sand aggregates together. Additionally, blast-furnace slag was also used as the replacement of cement on mass basis at the replacement ratio of 50% to reduce the amount of cement used and provide savings. The water–binder (w/b) ratio and PET–binder (PET/b) ratio used in the mixtures were 0.45 and 0.50, respectively. The size of shredded PET granules used in the preparation of mortar mixtures were between 0 and 4 mm. The results of the laboratory study and testing carried out showed that mortar containing only PET aggregate, mortar containing PET and sand aggregate, and mortars modified with slag as cement replacement can be drop into structural lightweight concrete category in terms of unit weight and strength properties. Therefore, it was concluded that there is a potential for the use of shredded waste PET granules as aggregate in the production of structural lightweight concrete. The use of shredded waste PET granules due to its low unit weight reduces the unit weight of concrete which results in a reduction in the death weight of a structural concrete member of a building. Reduction in the death weight of a building will help to reduce the seismic risk of the building since the earthquake forces linearly dependant on the dead-weight. Furthermore, it was also concluded that the use of industrial wastes such as PET granules and blast-furnace slag in concrete provides some advantages, i.e., reduction in the use of natural resources, disposal of wastes, prevention of environmental pollution, and energy saving.  相似文献   

15.
This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste.  相似文献   

16.
Fine rubber particles from scrap tires can be used as an insulation material by incorporating with Portland cement mortar. In addition to thermal properties, there are special mechanical and durability properties that are important for the insulation mortar. The addition of rubber particles has negative impact on these properties. The special properties for insulation mortar can be improved using cellulose ether, redispersible polymer powder (RPP), and wood fiber. The objective of this study is to investigate the effects of these additives and the rubber powder on the properties of rubberized insulation mortar. With increasing rubber content, both flexural strength and compressive strength were reduced, but the reduction of flexural strength was not as significant as for the compressive strength. At a fixed rubber content, as the optimal amount of RPP and smaller rubber powder were used, the compressive strength of rubberized mortar satisfied the minimum requirement of the type N mortar. The drying shrinkage of the rubber mortar was about the same as the ordinary cement mortar. The permeability of the rubber mortar was low comparing with that of the ordinary cement mortar. The bond strength of the rubber mortar is low due to the reduced effective bonding surface.  相似文献   

17.
Chemical-mechanical characteristics of crushed oyster-shell   总被引:2,自引:0,他引:2  
Enormous amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea. To seek for a possibility to recycle the waste as construction materials, chemical and mechanical characteristics of crushed oyster-shell were investigated. Chemical and microstructure analyses showed that oyster-shells are predominantly composed of calcium carbonate with rare impurities. Compressive strength tests for soil mortar specimens with varying blending ratio of cement, water, sand, and oyster-shell were compared with normal cement mortar. There was no significant reduction in the compressive strength up to 40% of dosages of oyster-shell instead of sand. The experimental results demonstrate that oyster-shells can be resources of pure calcareous materials and effective in replacement of sand, indicating promising reusable construction materials.  相似文献   

18.
This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.  相似文献   

19.
Enormous amounts of oyster shell waste have been illegally disposed of at oyster farm sites along the southern coast of Korea. In this study to evaluate the possibility of recycling this waste for use as a construction material, the mechanical characteristics of pulverized oyster shell were investigated in terms of its potential utilization as a substitute for the aggregates used in mortar. The unconfined compressive strengths of various soil mortar specimens, with varying blending ratios of cement, water and oyster shell, were evaluated by performing unconfined compression tests, and the results were compared with the strengths of normal cement mortar made with sand. In addition, the effect of organic chemicals on the hardening of concrete was evaluated by preparing ethyl-benzene-mixed mortar specimens. The long-term strength improvement resulting from the addition of fly ash was also examined by performing unconfined compression tests on specimens with fly-ash content. There was no significant reduction in the compressive strength of the mortars containing small oyster shell particles instead of sand. From these test data, the possible application of oyster shells in construction materials could be verified, and the change in the strength parameters according to the presence of organic compounds was also evaluated.  相似文献   

20.
A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号