共查询到19条相似文献,搜索用时 78 毫秒
1.
厌氧氨氧化启动过程及微生物群落结构特征 总被引:2,自引:8,他引:2
采用UASB反应器以体积比1∶2接种实验室培养的具有厌氧氨氧化(ANAMMOX)功能的厌氧污泥和城市污水厂的好氧污泥,耗时17 d成功启动ANAMMOX反应,启动阶段分为菌体水解期、活性提高期和稳定运行期.稳定运行后,逐步提高反应器容积负荷富集厌氧氨氧化菌,当容积负荷由0.10 kg·(m~3·d)~(-1)增至0.44 kg·(m~3·d)~(-1)时,总氮(TN)去除负荷也随之由0.09 kg·(m~3·d)~(-1)提高到0.42 kg·(m~3·d)~(-1),反应器污泥逐渐由浅红色加深,粒径大于0.2 mm的污泥所占比例由10.90%增至38.37%.采用高通量测序对接种污泥和负荷提高期的污泥进行检测,其中绿曲挠菌门(Chloroflexi)、变形菌门(Proteobacteria)、WWE3门、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)等占据主导.随着厌氧氨氧化菌富集程度的增大,脱氮功能菌中的变形菌门所占比例逐渐减少,从21.60%降至14.20%,而浮霉菌门随之增多,相对丰度由0.73%升至15.50%.当反应器的容积负荷增到0.44 kg·(m~3·d)~(-1)时,浮霉菌门中,Candidatus Brocadia属、Candidatus Jettenia属和Candidatus Kuenenia属是主要菌属,Candidatus Brocadia属占13.40%,是主要的厌氧氨氧化菌属. 相似文献
2.
3.
厌氧氨氧化反应器脱氮性能及细菌群落多样性分析 总被引:2,自引:6,他引:2
采用提高进水NH_4~+-N和NO_2~--N浓度的方式将上流式厌氧过滤床(UBF)反应器的容积负荷由0.52 kg·(m~3·d)~(-1)增大至2.75 kg·(m~3·d)~(-1),NH_4~+-N、NO_2~--N和TN的去除率也相应地分别从76.18%、53.47%、55.66%增大至94.04%、86.97%、82.96%.同时,采用Illumina高通量测序分析技术,对UBF厌氧氨氧化反应器内微生物的分布规律进行了研究.结果表明,反应器中的脱氮细菌较为丰富,其中变形菌门、浮霉菌门和硝化螺旋菌门分别占27.9%~39.9%、1.1%~26.4%和0.035%~0.188%.反应器运行过程中,反应器中的浮霉菌门Planctomycetes和变形菌门Proteobacteria分别由1.1%、27.9%增加至26.4%、39.9%.其中,浮霉菌门的丰度增大最为显著,其包含的Brocadiacea科达到了24.57%,成为优势菌群,Brocadiacea科主要包含Candidatus brocadia属.Alpha多样性指数和物种相对丰度聚类图分析表明反应器内微生物群落多样性逐渐减小,微生物群落结构产生了显著变化. 相似文献
4.
厌氧氨氧化菌富集培养过程微生物群落结构及多样性 总被引:2,自引:0,他引:2
为深入理解厌氧氨氧化菌富集培养过程微生物群落变化特征,采用ASBR反应器进行厌氧氨氧化菌富集培养,考察了不同培养时间微生物群落组成、多样性及物种网络关系.结果表明,通过逐步提高基质浓度,实现了厌氧氨氧化菌富集,NH4+-N和NO2--N去除率分别为97.6%和95.4%,总氮去除率为84.9%.高通量测序发现,整个培养过程优势菌门(相对丰度> 5%)为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、浮霉菌门(Planctomycetes)、装甲菌门(Armatimonadetes)和放线菌门(Actinobacteria);富集培养获得的主要厌氧氨氧化菌为Candidatus Brocadia,相对丰度从1.42%增长到24.66%;培养过程,微生物群落优势菌群组成未发生变化,但相对丰度呈现显著差异(P <0.05).富集培养过程不同时间,微生物群落α多样性呈现先升高后降低的趋势,且存在显著差异(P <0.05)... 相似文献
5.
厌氧氨氧化反应器启动方法的研究 总被引:33,自引:3,他引:33
研究了以自养型反硝化生物膜启动厌氧氨氧化反应器的可行性.结果表明,采用先培养自养型反硝化生物膜,再启动厌氧氨氧化反应器的方法,可在110d内成功启动厌氧氨氧化反应器,反应器的容积总氮负荷为0.145kg/(m3d),NH4+-N和NO2--N去除率分别为98.59%和99.08%.启动初期,厌氧氨氧化反应器的出水pH值低于进水pH值,随启动过程的推进,进出水pH值趋向一致.稳态运行时,反应器内呈碱性,NH4+-N去除量、NO2--N去除量和NO3--N生成量的比值为1:1.01:0.19.启动过程中,NH4+-N去除量与NO2--N去除量、NO3--N生成量之间的比值,以及反应器内pH值和污泥颜色的变化,可以指示厌氧氨氧化反应器的启动进程. 相似文献
6.
文章以上流式厌氧氨氧化反应器为基础,通过接种亚硝化污泥并提高溶解氧(DO)来启动一体化厌氧氨氧化反应器。考察了一体化反应器启动稳定过程中脱氮效能的变化,同时通过高通量测序技术对反应器内微生物群落演替进行了研究。结果表明:一体化反应器在总氮负荷0.75 kg/(m~3·d),DO含量2 mg/L的条件下,氨氮去除率和总氮去除率稳定在85%和80%以上。反应器中参与亚硝化反应的是亚硝化单细胞菌属,厌氧氨氧化反应是Candidatus kuenenia和Candidatus brocadia 2个属参与,反应器内还检测到少量Denitratisoma属的反硝化细菌。除此之外还有许多其他种类的细菌存在。 相似文献
7.
8.
反硝化生物膜启动厌氧氨氧化反应器的研究 总被引:23,自引:6,他引:23
反硝化菌的生长快于厌氧氨氧化菌 ,通过培育反硝化生物膜 ,利用反硝化菌的基质多样性和代谢多样性 ,可使生物膜由催化反硝化反应过渡到催化厌氧氨氧化反应 ,加速Anammox反应器的启动 .经过 3个月的运行 ,Anammox反应器的容积总氮负荷达 0 14 3kg·m-3 ·d-1,总氮去除率约 86 5 2 % ,出水NH 4 N和NO-2 N均低于 1mg·L-1.NH 4 N去除量、NO-2 N去除量和NO-3 N生成量之间比例的变化以及污泥颜色的变化 ,可以指示Anammox反应器的启动进程 . 相似文献
9.
厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征 总被引:2,自引:6,他引:2
为了解厌氧氨氧化耦合反硝化启动过程中脱氮除碳性能与微生物群落的关系,通过逐步提高进水COD浓度研究了SAD启动过程中脱氮除碳性能和微生物群落变化.结果表明,随着进水COD浓度增加,出水NH_4~+-N和NO_2--N的浓度保持稳定,平均去除率均在98%以上; TN去除率逐渐升高,第3阶段TN平均去除率为95. 6%,比厌氧氨氧化理论TN去除率高6. 8%;ΔNO_3~--N/ΔNH_4~+-N明显下降,从0. 15~0. 17逐步降至0. 03~0. 07;厌氧氨氧化脱氮贡献率逐渐下降,反硝化脱氮贡献率逐渐上升,COD去除率逐步增加.污泥活性分析表明SAD启动后污泥反硝化活性明显增加,厌氧氨氧化活性略微降低.高通量测序结果表明,反应器内微生物的优势菌门为绿弯菌门、浮霉菌门、厚壁菌门、装甲菌门和变形菌门,微生物群落特征与SAD脱氮除碳性能密切相关,与脱氮除碳有关的功能微生物主要有厌氧氨氧化菌、厌氧消化菌和反硝化菌,SAD启动后反应器内厌氧氨氧化菌丰度减少,厌氧消化菌和反硝化菌丰度明显增加. 相似文献
10.
两种悬浮填料在ASBBR厌氧氨氧化系统中的性能比较与微生物解析 总被引:1,自引:0,他引:1
选取聚乙烯(T1)和聚氨酯(T2)两种悬浮填料投入到两套相同厌氧序批式生物膜反应器(ASBBR)R1和R2中,以城市生活污水为配水基质,考察了两种填料在ASBBR中的性能及菌群结构特征,选出更适宜厌氧氨氧化(ANAMMOX)菌生长的填料.结果表明:R1和R2反应器分别在第93 d和73 d成功启动厌氧氨氧化,并实现稳定运行.稳定运行阶段,R1、R2系统总无机氮(TIN)平均去除率分别达88.34%、87.97%.此外,运行第150 d时,测得单个T1、T2填料的ANAMMOX菌活性分别为5.70和3.70 mg·g-1·h-1.同时,扫描电子显微镜(SEM)表征结果证明,球状菌在T1填料上的数量比同倍数下T2填料上多,且杂菌较少.高通量测序结果显示,T1、T2填料上Candidatus anammoxoglobus菌属相对丰度分别为75.29%和38.23%.本研究表明,相比于聚氨酯(T2)填料,聚乙烯(T1)填料更适宜ANAMMOX菌的富集. 相似文献
11.
为提高Anammox菌对各种操作条件的应变能力,扩大该技术在实际工程上的应用范围,对Anammox反应器在不同操作条件下的脱氮性能及其菌群的迁移转化规律进行试验性研究。292 d的实验数据表明,Anammox反应器在充足无机碳源环境、室温环境以及高盐环境下均可高效稳定的运行,且在室温为(23±2)℃、污泥量为22 g-MLSS/L下最高氮负荷达20.5 kg/m3.d,根据DNA结果,此阶段KU2约占反应器内所有菌群的75%,说明此类菌群对低温高负荷条件具有很强的生存性。此外,当进水盐度为30 g/L时,Anammox反应器仍可进行高效脱氮处理,而DNA结果显示,此阶段反应器内KU2所占比例降至36.5%,说明进水中的高盐度对KU2的富集具有消极意义。有关Anammox菌对高盐环境长期适应性及菌群变化的研究尚少,仍需进一步探讨。 相似文献
12.
包埋固定化活性污泥脱氮特性与微生物群落分析 总被引:1,自引:6,他引:1
采用包埋固定化活性污泥法进行污水深度处理脱氮,针对不同初始总氮浓度的模拟废水,基于序批式间歇反应器的小试实验,探讨了包埋颗粒的脱氮效果及其微生物种群特性.结果表明,在包埋颗粒的体积投加率为10%,实验水温为10~15℃,DO为2~4 mg·L~(-1)和初始COD浓度为80~100 mg·L~(-1)条件下,不同初始总氮浓度(10~45 mg·L~(-1))和C/N比(1.78~10)的各反应器中,稳定期包埋颗粒的最大总氮去除负荷为7.78~23.18 mg·(L·h)~(-1).扫描电镜发现,包埋颗粒具有较好的孔隙结构,且颗粒内部与表面均存在微生物附着生长,已成为微生物的良好载体.高通量测序结果表明,较初始包埋污泥,包埋颗粒内部与表面的微生物群落构成发生了显著变化,包埋颗粒内微生物多样性良好,颗粒中脱氮菌属优势明显.包埋颗粒中存在异养硝化-好氧反硝化菌属,提升了包埋颗粒内非传统生物脱氮途径的潜能. 相似文献
13.
《环境科学与技术》2016,(2)
采用NH_4~+-N和NO_2~--N进水浓度分别为200 mg/L和300 mg/L不变,不断缩短HRT以启动厌氧氨氧化反应器,研究了此过程中氮的去除情况、厌氧氨氧化反应化学计量关系及颗粒污泥的特性。结果表明:历时58 d成功启动了厌氧氨氧化反应器,NH_4~+-N和NO_2~--N的去除率分别为96.62%、76.37%,总氮去除速率达到1.71 kg/(m3·d);NH_4~+-N的去除量、NO_2~--N的去除量及NO_3~--N的生成量三者之间的比值为1∶1.29∶0.26,表现出典型的厌氧氨氧化反应特征;运行后期,反应器内的颗粒污泥呈红棕色,结构紧密,表面可见明显的孔洞,其表面分布的球菌具有火山口状的凹陷结构,为典型的厌氧氨氧化菌。 相似文献
14.
温度对自养型同步脱氮工艺处理猪场废水厌氧消化液性能及微生物群落的影响 总被引:2,自引:2,他引:2
通过运行4个不同温度条件下(30、25、20和15℃)的自养型同步脱氮反应器,研究了不同温度下自养型同步脱氮工艺处理猪场废水厌氧消化液的性能差异及其微生物机制.结果表明,30℃条件下反应器脱氮性能最佳.当温度由30℃降为25℃时,反应器总氮去除率从73%降低到66%,总氮去除速率从2. 29 kg·(m~3·d)~(-1)降低到1. 72 kg·(m~3·d)~(-1),污泥的形态和粒径变化不明显(SMD由80. 85μm降为79. 95μm).当温度低于20℃时,总氮去除率降低到42%,总氮去除速率降低到1. 18 kg·(m~3·d)~(-1),同时发现污泥出现解体现象,粒径减小(SMD为63. 21μm).而当温度为15℃时,总氮去除率降低至37%,总氮去除速率低至1. 00 kg·(m~3·d)~(-1),反应器运行困难.微生物群落结构分析表明,温度对厌氧氨氧化细菌的影响明显大于氨氧化细菌,因此低温条件下反应器脱氮性能下降的主要原因是厌氧氨氧化细菌对温度更敏感. 相似文献
15.
为进一步提高脱氮效率,该文采用人工快渗(CRJ)系统作为厌氧氨氧化反应器,考察了有机物添加对氮素污染物转化及菌群结构的影响,探讨了厌氧氨氧化协同反硝化脱氮的可行性.结果 表明,通过逐步提高进水COD浓度至20 mg/L,可在49d内实现CRI系统厌氧氨氧化协同反硝化的快速启动,稳定运行期间TN平均去除率达到98.1%,相比未添加有机物时启动周期缩短了11d,TN平均去除率提高了7.3%.当进水COD浓度提高至25 mg/L时,厌氧氨氧化对脱氮的贡献率降低了27.2%,主要厌氧氨氧化功能菌属Candidatus Kuenenia的相对丰度降至12.42%,而反硝化功能菌属Flavobacterium的相对丰度升至11.16%,反硝化菌与厌氧氨氧化菌竞争反应基质而导致厌氧氨氧化活性被削弱,TN平均去除率下降了13.5%.因此,将进水有机物浓度控制在适宜范围时可有效改善厌氧氨氧化的脱氮性能. 相似文献
16.
17.
通过设施大棚内容积为1.5 m3的人工模拟池试验,研究了框式与传统旱伞草浮床对富营养河水氮素转化及微生物菌群的影响. 传统浮床是以聚乙烯泡沫板为载体,栽植陆生植物来削减水体氮磷和有机物质等,从而达到净化水质的效果. 框式浮床是以塑料镂空支架为载体,除种植陆生植物外还添加填料等组件的新型浮床. 结果表明:①2种浮床对水体中TN,NH4+-N和NO3--N均有显著的去除效果,其中框式浮床和传统浮床的NH4+-N去除率分别高达91%和86%,TN去除率也分别达到74%和64%,NO3--N去除率分别为49%和31%. ②2种浮床系统有效地提高了水体中微生物和氮循环细菌总数和种群数量,尤其是框式浮床不同时期均比空白对照高出2~3个数量级. ③氮循环细菌的数量跟水体氮素去除有显著相关性. 其中水体ρ(NH4+-N)和氨化菌数量呈显著正相关,ρ(NH4+-N)和硝化菌数量呈极显著负相关,ρ(NO3--N),ρ(TN)和反硝化菌数量之间呈极显著负相关. ④框式浮床的独特结构使之比传统浮床的去氮能力更强. 其中,填料系统吸附贡献率为8%,植物吸收的去氮贡献为16.5%,微生物系统脱氮则为75.5%;而传统浮床植物系统吸收贡献率为31.8%,微生物系统脱氮贡献率为68.2%. 说明浮床系统中植物吸收只是系统去氮的一种途径,微生物脱氮在2种浮床脱氮途径中占主导作用. 相似文献
18.
在接种活性污泥的序批式反应器中投加固定化吡啶降解菌Paracoccus sp.KT-5,强化吡啶的生物降解,并与未投加固定化微生物的反应器进行对照,通过末端限制性片段长度多态性(T-RFLP)分析手段,探讨了运行过程中生物强化与未强化反应器中微生物群落结构的动态变化,并探讨了生物强化反应器的去除效果.结果表明,投加固定化吡啶降解菌可以加速反应器的启动.当吡啶初始浓度为195.6~586.8 mg.L-1,随着反应器的运行,投加固定化菌株的强化作用并不明显;但当吡啶初始浓度为782.4~2 934 mg.L-1,投加固定化菌株显示出优势.T-RFLP分析结果表明,投加的固定化菌株KT-5作为优势菌始终存在于反应器的固定化生物相和悬浮生物相中. 相似文献
19.
Xianglong Xu Guohua Liu Yuanyuan Wang Yuankai Zhang Hao Wang Lu Qi Hongchen Wang 《环境科学学报(英文版)》2018,30(2):317-327
A sequencing batch reactor(SBR)-anaerobic ammonium oxidation(anammox) system was started up with the paddy soil as inoculated sludge. The key microbial community structure in the system along with the enrichment time was investigated by using molecular biology methods(e.g., high-throughput 16 S r RNA gene sequencing and quantitative PCR). Meanwhile,the influent and effluent water quality was continuously monitored during the whole start-up stage. The results showed that the microbial diversity decreased as the operation time initially and increased afterwards, and the microbial niches in the system were redistributed. The anammox bacterial community structure in the SBR-anammox system shifted during the enrichment, the most dominant anammox bacteria were Candidatus Jettenia. The maximum biomass of anammox bacteria achieved 1.68 × 10~9 copies/g dry sludge during the enrichment period, and the highest removal rate of TN achieved around 75%. 相似文献