首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
为揭示微囊藻毒素(MCs)在湖泊的不同区域、杂食性鱼种的不同器官累积的规律,评价其潜在的健康风险,分别在太湖的梅梁湖、西部沿岸区、南部沿岸区和湖心区采集了鲤鱼和鲫鱼样本,利用固相萃取和高效液相色谱-质谱联用提取和测定样本中MCs的3种异构体MC-RR、MC-YR和MC-LR的含量.研究结果显示,鲫鱼与鲤鱼各器官累积MCs的程度不同,鲫鱼累积MCs含量的顺序为:肠壁肾脏心脏肝脏肌肉,而鲤鱼为:肠壁肾脏肌肉肝脏心脏.鲫鱼和鲤鱼肠壁中的MCs含量均高于其他器官.除鲤鱼肠壁中MC-LR所占MCs的比例超过50%以外,鲫鱼和鲤鱼其他各器官累积MCs均以MC-RR为主.对比鲤鱼和鲫鱼相同器官累积的MCs含量发现:鲤鱼肌肉累积MCs较高,为31.7±12.1 ng·g-1(干重);而鲫鱼肝脏、肾脏、肠壁和心脏所含MCs较高,分别为45.4±44.5、114.0±51.1、2042.9±4426.0、59.5±26.7 ng·g-1(干重).基于鲫鱼和鲤鱼肌肉累积的MCs估算的人体每日MCs摄入量已超过世界卫生组织(WTO)颁布的每日最大摄入量(0.04μg·kg-1·d-1),其中人体每日通过鲤鱼而摄入MCs的量较高,为0.0525μg MC-LR eq·kg-1·d-1,存在一定潜在健康风险.  相似文献   

2.
天然蓝藻中蛋白质含量高达40%,与大豆的蛋白质含量相当,是优质饲料蛋白的潜在来源。然而,天然蓝藻中主要含有一种称为微囊藻毒素(Microcystins,MCs)的生物毒素,对动物和人体的健康具有潜在威胁,且关于MCs对家禽氧化胁迫的研究几乎是一片空白。因此,急需开展蓝藻饲料化利用对家禽氧化胁迫的研究,为蓝藻饲料化利用提供理论依据。该文通过腹腔注射的方式研究了崇仁麻鸡肾脏对微囊藻毒素-LR(MC-LR)氧化胁迫的响应。试验设置了5μg·kg~(-1) MC-LR(低剂量组)、10μg·kg~(-1) MC-LR(中剂量组)和20μg·kg~(-1) MC-LR(高剂量组)3个染毒组,同时腹腔注射生理盐水作为对照组。在腹腔注射后的1、3、12、24、48 h检测了鸡肾脏中谷胱甘肽(GSH)含量以及谷胱甘肽转移酶(GST)、谷胱甘肽过氧化物酶(GPX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性变化以及肾体比变化。结果表明:在MC-LR的作用下,鸡肾脏抗氧化酶(GST、SOD、CAT和GPX)和GSH含量均存在不同程度的变化,但除了3 h时中和高剂量染毒组肾脏中CAT酶活性(值分别为(96.66±1.13)和(74.01±11.20)U·mg~(-1))显著低于对照组(123.58±11.33)U·mg~(-1)(t=4.253;P=0.024和t=4.432;P=0.022)外,其它染毒组的各类抗氧化酶和GSH指标与对照组之间均无显著性差异(P0.05);鸡肾脏系数从1h就开始呈现毒素处理组高于对照组,并在12、24和48 h时,毒素处理组肾脏系数(0.79%-0.87%)显著高于对照组(0.58%-0.70%)的趋势(t=-6.687--3.495;P=0.018-0.036)。上述结果表明,在MC-LR作用下,鸡肾脏产生了氧化应激现象,但是其抗氧化酶系统可能难以抵御MC-LR危害,MC-LR对鸡肾脏的毒性较大。  相似文献   

3.
镉锌联合诱导金属硫蛋白在鲫鱼肝脏和肾脏中的表达   总被引:2,自引:0,他引:2  
以鲫鱼Carassius auratus为试验材料,研究了在一定环境条件下重金属镉(Cd)锌(Zn)联合胁迫对鲫鱼肝脏和肾脏组织中金属硫蛋白(MT)质量分数的影响.结果表明,Cd2+与Zn2+联合胁迫下,鲫鱼的肝脏和肾脏组织中MT质量分数的总体变化趋势较为一致,都是呈先升高后降低再升高,MT的质量分数在12 h时达到峰值,肝脏MT质量分数达(4.84±0.28)(10.63±0.72)μg·g-1,肾脏MT质量分数达(6.34±0.39)(12.99±0.52)μg·g-1.从诱导的数量来看,Cd2+与Zn2+联合胁迫下肝脏和肾脏中MT质量分数均高于单独Cd2+试验组中的结果,这表明Zn2+的存在可以增强Cd2+诱导鲫鱼组织中MT合成的能力;肝脏在试验后的12 h内的增加速率最大为0.16~0.64μg·g-1·h-1,肾脏在试验后的6 h内的增加速率最大为0.41~1.70 μg·g-1·h-1,表明水体中的Cd2+与Zn2+联合可诱导鲫鱼组织中MT的合成与表达,且诱导时间主要在12 h之内.  相似文献   

4.
重金属镉锌联合胁迫下鲫鱼组织中金属硫蛋白的动态变化   总被引:1,自引:0,他引:1  
以鲫鱼(Carassius auratus)为试验材料,研究了重金属镉锌联合胁迫对鲫鱼肝脏和肾脏组织中金属硫蛋白(MT)含量的影响。结果表明,在0.005、0.010、0.050、0.100、0.500 mg.L-1镉分别与1.0 mg.L-1锌联合胁迫下,鲫鱼肝脏和肾脏组织中MT含量的总体变化趋势较为一致,均为先升高后降低再升高,MT含量在第12小时达到峰值,肝脏MT含量达(5.735±0.016)~(10.640±0.023)μg.g-1,肾脏MT含量达(8.346±0.014)~(12.990±0.031)μg.g-1。在试验的0—12 h内肝脏中MT增加速率为0.22~0.69μg.g-1.h-1,在试验的0—6 h内肾脏中MT增加速率为0.83~1.67μg.g-1.h-1。在0—12 h内鲫鱼肝脏和肾脏组织中MT增加量与镉含量呈正相关,表现出一定的剂量-效应关系,表明水体中镉锌联合可诱导鲫鱼组织中MT的合成与表达,且诱导时间主要在0—12 h之内。研究表明,鲫鱼肝和肾组织中MT可作为评价外源重金属污染的指标。  相似文献   

5.
蓝藻虽然能产生有毒的生物毒素,但是也含有较高的蛋白质。为探索蓝藻饲料化利用的可能性,本文通过腹腔注射的方式研究了微囊藻毒素-LR(MC-LR)对崇仁麻鸡的半数致死剂量(LD_(50))及其对肝脏的氧化损伤。实验设计了4个剂量组(对照组、5、10和20μg·kg~(-1)MC-LR),并在1、3、12、24和48 h检测了谷胱甘肽(GSH)含量以及谷胱甘肽S-转移酶(GST)、谷胱甘肽过氧化物酶(GPX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性变化。结果表明,MC-LR对崇仁麻鸡的LD_(50)值为34.67μg·kg~(-1)体重(bw),95%的置信限为33.51~35.83μg·kg~(-1)bw。在MC-LR的作用下,鸡肝出现了氧化应激现象。3个染毒组鸡肝中GSH含量呈现先下降而后上升恢复至正常水平的趋势,GST酶活力表现为先上升而后下降至正常值的趋势,这说明GSH和GST共同参与了鸡肝中MC-LR的解毒;鸡肝中GPX酶活性在前3小时先保持不变(除了1 h的高剂量组),随即显著上升,这说明GPX和GSH共同参与了鸡肝中过量活性氧自由基(ROS)的清除,GPX可以作为监测MC-LR引起鸡毒性作用的生物标志物。CAT酶活力表现为先显著下降(P<0.05)而后快速上升至正常值的趋势,SOD酶在整个实验期间几乎保持稳定,这可能与SOD酶活性较高所致。  相似文献   

6.
环境中同时存在着多种重金属元素,联合暴露与单独暴露时,重金属在体内的蓄积分布情况也可能有所差异。为探究重金属元素(汞、铬、砷、铅)对镉(Cd)在体内分布的影响,建立了大鼠在Cd暴露下的药代动力学(PBPK)模型,并进行了包括Cd在内5种重金属的联合毒性实验,比较了Cd单独给药与重金属混合物给药2种方式下大鼠肝脏、肾脏中的Cd浓度水平。结果表明,联合暴露高(Hg Cl23.67 mg·kg~(-1),NaAsO_2 3.67 mg·kg~(-1),CdCl_2 10.55 mg·kg~(-1),K_2Cr_2O_7 6.40 mg·kg~(-1),Pb(OOCCH_3)_2·3H_2O 133.33 mg·kg~(-1))、中(HgCl_20.367 mg·kg~(-1),NaAsO_2 0.367 mg·kg~(-1),CdCl_2 1.055 mg·kg~(-1),K2Cr2O70.640 mg·kg~(-1),Pb(OOCCH_3)_2·3H_2O 13.333 mg·kg~(-1))、低(HgCl_2 0.0367 mg·kg~(-1),Na As O20.0367 mg·kg~(-1),Cd Cl20.1055 mg·kg~(-1),K_2Cr_2O_7 0.0640 mg·kg~(-1),Pb(OOCCH3)2·3H2O 1.3333 mg·kg~(-1))剂量组大鼠肝脏中Cd浓度分别为13.37、0.78和0.06μg·g~(-1);肾脏中Cd浓度分别为14.41、1.64和0.15μg·g~(-1)。与对照组相比,暴露组中Cd浓度有显著升高,且不同剂量组之间均有显著性差异。同剂量Cd单独暴露的PBPK模拟结果显示,肝脏及肾脏中的Cd浓度水平落在联合毒性实验结果的浓度范围内,初步推断其他4种重金属的联合暴露并没有影响Cd在大鼠肾脏和肝脏中的浓度分布。  相似文献   

7.
低浓度铅暴露对鲫鱼肝脏抗氧化系统的影响   总被引:34,自引:0,他引:34  
陈亮  郭红岩  沈红  王晓蓉 《环境化学》2002,21(5):485-489
研究了鲫鱼幼体 (Carassiusauratus)在低浓度铅的长期 ( 4 0d)暴露实验中 ,鲫鱼抗氧化系统所产生的生理生化反应 .结果表明 ,在本实验的剂量范围内 ,铅对鲫鱼肝脏内过氧化氢酶 (CAT)、超氧化物歧化酶 (SOD)的活性 (在暴露浓度达到 0 2mg·l- 1时 )表现为诱导作用 ;而铅对谷胱甘肽硫转移酶 (GST)、谷胱甘肽过氧化物酶 (GSH Px)的活性在低浓度时 ( 0 0 1mg·l- 1)被抑制 ,其中暴露浓度在 0 2mg·l- 1时GSH Px被进一步抑制 .在实验范围内 ,GSH含量无明显变化 .另外 ,对于低浓度铅的长期暴露 ,鲫鱼肝脏中的GST和GSH Px较CAT和SOD敏感 ,可考虑作为水生生态系统中铅低浓度长期暴露的一种生物检测指标 .  相似文献   

8.
采用高效液相色谱法对太湖梅梁湾水体中微囊藻毒素的质量浓度进行春、夏、秋、冬4个季节的监测,分析了梅梁湾水体中微囊藻毒素(MC-RR,MC-YR,MC-LR)质量浓度的季节变化特征及其与水体中总氮、总磷、CODMn和浮游藻类等富营养化指标的相关关系。分析结果表明:MCs夏季(8月份)质量浓度最高,为(0.78±0.99)μg.L-1,其次为春季(5月份)和秋季(11月份),分别为(0.43±0.96)和(0.50±1.12)μg.L-1,冬季(2月份)质量浓度显著降低,为(0.14±0.27)μg.L-1;水体中MCs的检出质量浓度与常规水化学指标之间相关性分析表明:MC-LR的质量浓度与TP的质量浓度呈极显著正相关与TN/TP呈极显著负相关(P<0.01),与CODMn呈显著正相关(P<0.05);水体中MCs的检出质量浓度与浮游藻类生物量相关性分析表明:水体中MCs的检出质量浓度与微囊藻及蓝藻生物量有显著相关关系,太湖梅梁湾的藻毒素主要由微囊藻属(Microcystis)产生。  相似文献   

9.
为了解微囊藻毒索在鲋鱼Carassius auratus L.体内生物富集作用,用LC/MS监测不同时间的鲋鱼肝脏、肌肉,以及饲养用水中痕量的微囊藻毒素.结果显示,肌肉组织中MC-RR和MC-LR的含量在18 d时达到峰值,分别为7.87 ng·g~(-1)和2.18 ng·g~(-1);而肝脏组织中MC-RR和MC-LR的含量在鲋鱼暴露9天时达到最高值,分别为25.30 ng·g~(-1)和33.27ng·g~(-1).研究结果支持肝脏组织是MCs的主要靶向器官,并且表明肝脏组织对MC-LR的富集量远大于MC-RR,而肌肉组织更易于积累MC-RR.文章还研究了鲋鱼体内的抗氧化酶(SOD、CAT、GST、GR酶)的活性变化,对MCs介导的氧化胁迫进行了评估.通过分别测定暴露不同时间点(3、9、18 d)肝脏和肌肉组织中的抗氧化酶的活性,发现它们的活性与组织中MCs的含量基本呈正相关,可能对MCs介导的氧化胁迫有缓解作用.以上表明,MCs能在鱼体内积累,抗氧化系统虽可缓解,但不能完全降解.因此食用被MCs污染的鱼类存在潜在的食品安全风险.  相似文献   

10.
纳米ZnO对鲫鱼肝脏的毒性   总被引:1,自引:0,他引:1  
鲫鱼(Carassius auratus)腹腔注射不同浓度纳米ZnO(5mg·kg-1、12.5mg·kg-1、25mg·kg-1、50mg·kg-1和125mg·kg-1,以鲫鱼体重计)14d后,研究了鲫鱼肝脏中的自由基(ROS)强度变化、氧化应激反应及其毒性机制.结果表明:纳米ZnO显著诱导鲫鱼肝脏自由基产生;自由基信号强度和脂质过氧化物(MDA)随纳米ZnO浓度的升高呈先升高后降低趋势;而还原型谷胱甘肽(GSH)含量和GSH/GSSG随纳米ZnO浓度的升高呈先降低后升高趋势;纳米ZnO的毒性主要表现在引起鲫鱼肝脏氧化损伤,其毒性机制为诱导鲫鱼肝脏产生活性氧自由基.  相似文献   

11.
杨冬梅  李俊年  何岚  薛立群 《生态环境》2010,26(6):1300-1305
研究采用食管瘘、体外消化实验,于2006年4月、8月和11月分别测定湘西地区土壤、牧草和养殖于湖南省湘西地区湖南群博公司的200只波尔山羊(boergoat)血液钙镁含量,以期揭示湘西地区不同季节钙镁在土壤-牧草-山羊体内含量及动态变化。结果表明:(1)土壤全镁、全钙在11月份最低,分别为197.21±3.14μg·g-1和3607.8±39.41μg·g-1;(2)牧草中钙含量在8月份最高,为8927.5±127.21μg·g-1;牧草三季节镁含量差异不显著;(3)山羊体内钙在4月份和11月份出现负沉积,分别为-6.03±3.17g·d-1,-7.08±3.35g·d-1;4月份,8月份山羊血浆镁含量分别为8.83±0.45μg·g-1和8.56±1.07μg·g-1,低于动物低镁血症最低限27.1μg·g-1。  相似文献   

12.
对主养草鱼(Ctenopharyngodon idellus)池塘3种混养模式(模式Ⅰ,草鱼、鲢、鳙、鲫分别为250、35、40、15尾;模式Ⅱ,草鱼、鲢、鳙、匙吻鲟、鲫分别为250、35、20、20、15尾;模式Ⅲ,草鱼、鲢、鲫分别为250、35、15尾)水体和底泥中氮含量进行比较分析。结果表明,模式Ⅰ、Ⅱ、Ⅲ水体TN含量均值分别为1.251、1.001和1.228 mg.L-1,NH4+-N含量均值分别为0.391、0.345和0.319 mg.L-1,NO3--N含量由高到低为模式Ⅰ、Ⅱ和Ⅲ,NO2--N含量由高到低为模式Ⅱ、Ⅰ和Ⅲ。模式Ⅰ、Ⅱ、Ⅲ底泥TN含量均值分别为0.793、0.910和0.963 mg.g-1,NH4+-N含量均值分别为0.005、0.006和0.004 mg.g-1。模式Ⅱ水体TN含量显著低于模式Ⅰ和Ⅲ(P<0.05),底泥中氮营养盐的转化也优于其他2种模式,可见模式Ⅱ最有利于水体中氮营养盐的转化和利用。  相似文献   

13.
由于独特的抗菌特性,纳米银(AgNP)在诸多领域得到广泛应用,但是其生物有效性、动物组织分布及排出尚不清楚。将聚乙烯吡咯烷酮包被的AgNP溶液按照10 mg·kg~(-1)给雌性SD大鼠灌胃,采用ICP-MS检测SD大鼠组织、粪便及尿液中总银浓度。结果表明,AgNP通过小肠吸收后,可以通过血液循环快速分布在肝、肾、脾、肺、脑等靶器官。灌胃后1 h,大鼠各组织中总银浓度达到最大值(肝、肾、脾、肺、脑中银浓度分别为(0.29±0.13)mg·kg~(-1)、(0.23±0.04)mg·kg~(-1)、(0.17±0.05)mg·kg~(-1)、(0.11±0.01)mg·kg~(-1)、(0.06±0.02)mg·kg~(-1)),之后银浓度随时间而降低,直至和对照组无显著性差异。在灌胃途径下,AgNP对SD大鼠的有效性为8.5%,且73%的AgNP是通过粪便的途径排出体外。  相似文献   

14.
Bioconcentration factors (BCF) by round crucian carp and partition coefficients between n‐octanol and water (Pow) were measured for dibutyltin, tributyltin and triphenyltin compounds. Pow was 0.97–3.66 for 7 organotin compounds. BCF of tributyltin and triphenyltin compounds was 1.70–2.77 for muscle, 1.70–2.66 for vertebra, 2.05–3.70 for liver and 1.49–3.50 for kidney.  相似文献   

15.
低浓度溶解氧下猪粪固体有机物水解产酸研究   总被引:2,自引:0,他引:2  
本文以猪粪为发酵原料,通过批式实验研究不同溶解氧(DO)浓度(0—0.26 mg.L-1)、发酵时间(3—12 d)和挥发性固体(VS)浓度(11.14—111.35 g.L-1)对猪粪固体水解酸化过程的影响,确定了低DO浓度下固体有机物优化水解产酸工艺条件:中温35℃,初始VS浓度37.11 g.L-1,初期的DO浓度0.1—0.26 mg.L-1.在此条件下,发酵时间3 d,DO浓度下降到0.10 mg.L-1以下.猪粪发酵液pH值由7.45±0.10降低到5.86±0.17,VS降解率(25.67±1.20)%,挥发性脂肪酸(VFA)中乙酸(3895±91)mg.L-1、丙酸(2313±82)mg.L-1、正丁酸(1361±17)mg.L-1、正戊酸(540±11)mg.L-1.优化条件下的猪粪水解酸化液进行厌氧产甲烷发酵,发酵10 d内产气停止,低溶解氧水解酸化和厌氧产甲烷发酵累计时间仅为13 d,甲烷体积分数(69.5±0.2)%,VS产气率为(0.282±0.011)L CH.4g-1VS.研究结果表明,适当延长发酵时间能够增加VFA中乙酸的含量,初始VS浓度差异对发酵液VFA浓度和VS降解率的影响较显著,低溶解氧能够促进猪粪固体有机物水解过程.  相似文献   

16.
多壁碳纳米管对水稻幼苗的植物毒性研究   总被引:1,自引:0,他引:1  
考察了浓度为10、50和100 mg·L~(-1)的多壁碳纳米管(MWCNTs)的植物毒性,通过测量水稻生长指数、根系氧化应激反应、细胞膜损伤和生理功能的变化,探索了其具体的毒性机制。将水稻幼苗暴露于不同浓度的MWCNTs悬浮液中培养10 d后,高浓度处理组(100 mg·L~(-1))中水稻幼苗地上部分和根系鲜重分别降低至对照组的87.6%±1.1%和69.2%±7.8%。对根系深入研究发现氧化应激反应和细胞膜的损伤主要出现在高浓度处理组,此时过氧化氢酶(CAT)活性由对照组的(8.8±1.6)U·mg-1prot(protein,蛋白质)增加至(16.3±2.8)U·mg-1prot,丙二醛(MDA)含量由对照组的(8.0±0.3)μmol·g-1FW(fresh weight,鲜重)增加至(15.1±1.4)μmol·g-1FW。然而,水稻根系的生化酶活性在低浓度(10 mg·L~(-1))时就开始明显降低。通过透射电镜(TEM)观察发现,MWCNTs颗粒分布在水稻幼苗根系细胞内,从而证实了MWCNTs能被植物细胞吸收。  相似文献   

17.
为了解Cd Te/Zn SQDs(Cd Te/Zn S量子点)在小鼠肾脏中的药代动力学特征,选择雄性ICR(Institute of Cancer Research)小鼠为动物模型,每只单次尾静脉注射5 nmol的Cd Te/Zn SQDs(粒径约为6 nm,最大发射波长590 nm)。在尾静脉注射Cd Te/Zn SQDs 15 min、1 h、6 h、24 h、72 h、168 h、2 w、4 w和6 w时剖取小鼠的肾脏,消化后使用电感耦合等离子体质谱(ICP-MS)检测其中的Cd(镉)和Te(碲)含量,Cd和Te在小鼠肾脏中浓度随时间的变化均呈现先增加后降低的趋势,Cd和Te含量分别在168 h和72 h时达到峰值(60.42±8.85)ng·g~(-1)和(18.69±0.97)ng·g~(-1),之后逐渐下降,将二者的含量以摩尔比表示,随着给药时间的延长,摩尔(Cd):摩尔(Te)由2.71:1逐渐变成1.39:1。利用3P87计算Cd和Te在肾脏中的药代动力学参数,结果发现Cd和Te在肾脏中的Vd(表观分布体积)分别为(823.14±82.76)g·kg~(-1)和(686.28±53.13)g·kg~(-1)(P0.05);AUC(药物浓度-时间曲线下面积)分别为(24.48±2.52)μg·g~(-1)·h和(7.41±0.60)μg·g~(-1)·h(P0.01);CL(清除率)分别为(0.90±0.11)g·kg~(-1)·h~(-1)和(1.02±0.13)g·kg~(-1)·h~(-1)(P0.05);t1/2(半衰期)分别为(617.02±8.57)h和(458.21±1.85)h(P0.01)。研究提示Cd和Te在肾脏含量的摩尔比随时间变化不同,QDs在体内发生了化学降解;二者的药代动力学参数不同,Cd在肾脏中的代谢速度明显慢于Te,游离的Cd2+可能引起肾脏毒性。  相似文献   

18.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   

19.
太湖蓝藻水华及其次级代谢产物微囊藻毒素(MCs)的生物累积对生态系统和人体健康造成严重威胁,已成为最近环境科学研究的热点。本研究从太湖的不同区域(梅梁湖、西部沿岸区、南部沿岸区和湖心区)采集不同体重和体长的白鲢,利用固相萃取方法提取、高效液相色谱-质谱联用仪测定了白鲢不同器官中MCs的3种异构体MC-RR、MC-YR及MC-LR的含量,结合不同湖区的相关水质指标分析了MCs在白鲢体内的累积规律及其影响因素。研究结果表明:白鲢不同器官MCs的含量由高到低为:肠壁肾脏肝脏肌肉心脏,且肠壁累积的MCs显著高于肾脏、肝脏、肌肉和心脏。MC-RR含量是白鲢各器官累积MCs的异构体的主体,约占MCs的60%。梅梁湖鲢鱼的肌肉、肾脏和心脏中MCs均高于西部沿岸区、南部沿岸区和湖心区。生物指标(体重和体长)是影响白鲢肾脏内MCs和MC-RR含量以及肠壁内MCs含量重要因素。太湖水质指标总磷(TP)、藻细胞数量、湖泊营养指数及环节动物数量尤其是TP对白鲢肝脏累积MCs产生明显影响,TP、总氮(TN)、铵态氮(NH4-N)、内梅罗指数和环节动物数量尤其是NH4-N对肠壁累积MCs产生明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号