共查询到20条相似文献,搜索用时 15 毫秒
1.
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO 2 generation. The aged tylosin treatment resulted in the greatest degree of CO 2 inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. 相似文献
2.
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. 相似文献
3.
In this study, a full-scale biosparging investigation was conducted at a petroleum-hydrocarbon spill site. Field results reveal that natural attenuation was the main cause of the decrease in major contaminants [benzene, toluene, ethylbenzene, and xylenes (BTEX)] concentrations in groundwater before the operation of biosparging system. Evidence of the occurrence of natural attenuation within the BTEX plume includes: (1) decrease of DO, nitrate, sulfate, and redox potential, (2) production of dissolved ferrous iron, sulfide, methane, and CO(2), (3) decreased BTEX concentrations along the transport path, (4) increased microbial populations, and (5) limited spreading of the BTEX plume. Field results also reveal that the operation of biosparging caused the shifting of anaerobic conditions inside the plume to aerobic conditions. This variation can be confirmed by the following field observations inside the plume due to the biosparging process: (1) increase in DO, redox potential, nitrate, and sulfate, (2) decrease dissolved ferrous iron, sulfide, and methane, (3) increased total cultivable heterotrophs, and (4) decreased total cultivable anaerobes as well as methanogens. Results of polymerase chain reaction, denaturing gradient gel electrophoresis, and nucleotide sequence analysis reveal that three BTEX biodegraders (Candidauts magnetobacterium, Flavobacteriales bacterium, and Bacteroidetes bacterium) might exist at this site. Results show that more than 70% of BTEX has been removed through the biosparging system within a 10-month remedial period at an averaged groundwater temperature of 18 degrees C. This indicates that biosparging is a promising technology to remediate BTEX contaminated groundwater. 相似文献
4.
Environmental Science and Pollution Research - Nitrogen fertilizer has considerable effects on soil carbon fluxes. However, the responses of soil CO2 emission to N fertilizer remain controversial.... 相似文献
5.
Crop rotation long-term field experiments were established in 1955 and 1956 at three locations in the Czech Republic (?áslav, Ivanovice, and Lukavec) differing in their climatic and soil physicochemical properties. The effect of long-term application of farmyard manure and farmyard manure + NPK treatments on plant-available, easily mobilizable, potentially mobilizable, and pseudo-total contents of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) contents in soils (in 2013) as well as the uptake of these elements by winter wheat ( Triticum aestivum L.) grain and straw were analyzed in the two following seasons: 2012 and 2013. The treatments resulted in increasing the soil pH level when compared to the control, but the cation exchange capacity remained unchanged. Although all fertilizers were applied for six decades, the pseudo-total concentration elements in both the soil and wheat plants stayed far below those of the Czech and European threshold limits for agricultural soils and cereals for human nutrition and feedstuff. Although the mobile pools of As, Cu, and Zn were slightly changed at the treated soils, these changes were not related to the element uptake by the wheat plants. Moreover, the effect of the location and growing season was more decisive for the differences in soil and plant element contents than for the individual treatments. Thus, the long-term application of farmyard manure did not result in any substantial change in risk element contents in both soils and winter wheat plants. 相似文献
6.
Enhanced microbial degradation of toxaphene by natural microorganisms occurred in soil and sediment amended with organic matter kept under anaerobic (flooded) conditions. Laboratory experiments yielded a dissipation half-life of approximately 3 and 1 week for soil and sediment, respectively, containing 10 ppm of technical toxaphene and a 1% alfalfa meal amendment. Dissipation was accompanied by an increase in early eluting gas chromatographic peaks and a decrease in later eluting peaks, indicating that dechlorination had occurred. Enhanced anaerobic dissipation also took place in soil containing 500 ppm of toxaphene, although at a lesser rate than at 10 ppm, and when cotton gin waste was used as amendment in place of alfalfa meal. Sediment in a toxaphene-contaminated pesticide waste disposal ditch was amended with 10% steer manure and flooded to ascertain field utility of the technique for on-site decontamination. Toxaphene residues were reduced from 63 to 23 ppm in 120 days, and some degradation activity still occurred up to 8 months after this single treatment. 相似文献
7.
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan beta residues were always higher as compared to endosulfan alpha. From 78 to 85 days, 5.0% and 20.4% decrease in alpha and beta endosulfan residues was observed, respectively. Endosulfan beta isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g-1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments. 相似文献
8.
To evaluate the effects of manure application on continuous maize seed production, 10-year cattle manure on soil properties, heavy metal in soil and plant were evaluated and investigated in calcareous soil. Results showed that manure application increased soil organic matter, total and available nutrients, pH, and electrical conductivity (EC), and the most massive rate caused the highest increase. Manure application led to an increase in exchangeable fraction and an increase of availability of heavy metal. Residual fraction was dominant among all metals, followed by the fraction bound to Fe and Mn oxides. Manure application involved accumulation of heavy metal on corn, but the accumulation in the stem is higher than that in the seed. Manure application led to a high deficiency of total Zn and high accumulation of total Cd in the soil of corn seed production, which should be a risk for safety seed production in calcareous soil in Northwest China. 相似文献
9.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m −2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N 2O, CH 4 and CO 2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N 2O fluxes were from 26% to 79% lower than N 2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N 2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH 4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation. 相似文献
10.
采用Illumina MiSeq高通量测序法探究黑土微生物群落对副球菌属(Paracoccus sp.)QD15-1修复邻苯二甲酸二甲酯(DMP)污染土壤的响应。结果表明,副球菌属QD15-1在7d内可快速有效降解土壤中的DMP,平均降解率为94.7%,并能保持稳定;Shannon、Sobs指数显示,土壤中微生物多样性、丰富性受到DMP的影响;土壤中的优势门为放线菌门(Actinobacteria),占总菌门数的50%以上;鞘氨醇单胞菌属(Sphingomonas)是第一优势菌属,第二优势菌属为类诺卡氏菌属(Nocardioides)。 相似文献
11.
Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil. 相似文献
12.
The potential of the microbial communities present in the intertidal zone of an unimpacted beach (a beach that did not suffer any significant oil spill) to degrade hydrocarbons was investigated. For that, laboratory-based microcosms (50-ml flasks) were set up with sandy beach sediment spiked with crude oil and incubated with local seawater for 15 days in the dark. Three bioremediation treatments were tested (biostimulation (BS), autochthonous bioaugmentation (AB), and combined treatment of biostimulation + bioaugmentation (BS + AB)) and the results were compared with natural attenuation (NA). Visual inspection showed clearly an oil solubility increase (confirmed by a higher hydrocarbons concentration in supernatant solutions) for all tested treatments when compared to NA. Significant degradation of the oil, shown by different profiles of petroleum hydrocarbons, was also observed for the different treatments particularly for BS + AB. Therefore, the microbial community of this unimpacted beach sediment could respond to an oil spill, degrading hydrocarbons. But to increase the natural attenuation pace, obtained results indicated that BS + AB is an appropriate approach for the bioremediation of beaches recently impacted by an oil spill. The autochthonous microbial cultures can be obtained “before” or “after” the contamination of the target site, being inoculated into the site right after it contamination. 相似文献
13.
Environmental Science and Pollution Research - Nitrous oxide (N2O) is a strong greenhouse gas, and it is of great significance for N2O reduction to study the effects of biochar on its production... 相似文献
14.
Different aspects of bacterial degradation of organic contaminants in soil, and how to improve the efficiency and reproducibility is discussed in this review. Although bioremediation in principle includes the use of any type of organism in improving the condition of a contaminated site, most commonly bacteria are the degraders and other organisms, such as soil animals or plant roots, play a role in dissemination of bacteria and, indirectly, plasmids between bacteria, and in providing nutrients and co-substrates for the bacteria active in the degradation process. There are a number of different procedures that have been tested more-or-less successfully in attempts to improve reliability, cost efficiency and speed of bioremediation. The methods range from minimal intervention, such as mere monitoring of intrinsic bioremediation, through in situ introduction of nutrients and/or bacterial inocula or improvement of physico-chemical conditions, all the way to excavation followed by on site or ex situ composting in its different varieties. In the past the rule has been that more intervention (leading to higher costs) has been more reliable, but novel ideas are continuously tried out, both as a means to come up with new truly functional applications and also as a line of studies in basic soil microbial ecology. Both approaches generate valuable information needed when predicting outcome of remediation activities, evaluating environmental risks, deciding on cleaning-up approaches, etc. The emphasis of this review is to discuss some of the novel methods for which the value has not been clearly shown, but that in our view merit continued studies and efforts to make them work, separately or in combination. 相似文献
15.
Environmental Science and Pollution Research - This study aims to characterize the microbial community and its relationship with heavy metal pollution in the beaches of Sugözü, an... 相似文献
16.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors. 相似文献
17.
When applied to agricultural soils, phosphate fertilizers and the mineral or organic compounds present in solid and/or liquid waste may raise phosphorus (P) content and increase soil P saturation. The degree of phosphorus saturation (DPS) is a good indicator of potential P loss from agricultural soils. The purpose of this study was to calculate the DPS of samples from an Oxisol amended for 5 years with biosolids and mineral fertilizer. DPS was calculated based on P, iron, and aluminum extracted by ammonium oxalate and oxalic acid (DPS ox) or by Mehlich-1 solution (DPS M1). Treatments included NPK mineral fertilization (175 kg ha ?1 of P), B1?=?19.02 t ha ?1 of biosolids (350 kg ha ?1 of P), B2?=?38.17 t ha ?1 of biosolids (703 kg ha ?1 of P), B3?=?76.26 t ha –1 of biosolids (1,405 kg ha ?1 of P), and a control (no P added). Water-extractable P (WEP) was also measured. Critical levels of DPS ox and DPS M1 (21 and 24 %, respectively) were only achieved in the topsoil (0–0.1 m) at the highest biosolid dose. Concentration of WEP was positively correlated to DPS ox and DPS M1. The DPS M1 method may be an alternative to DPS ox for assessing the environmental risk of P loss from soil into surface runoff. 相似文献
18.
Environmental Science and Pollution Research - This study investigated the impact of liquid swine manure (LSM) land surface application in an apple orchard on soil health and copper (Cu) and zinc... 相似文献
19.
Residue field trials in cucumber were conducted for the safe use of a commercial formulation of cyproconazole·azoxystrobin 28% suspension concentrate (SC 294 g a.i. ha?1, three applications at a 7-day interval) in the year 2018, in China. To determine the residues of cyproconazole and azoxystrobin in cucumber, a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was developed using high-performance liquid chromatography coupled with tandem mass spectrometry. This validated method was applied to analyze cucumber samples collected from 12 specified regions. At the 3-day interval to harvest, the highest residue (HR) of azoxystrobin was 0.150 mg kg?1, which was lower than the maximum residue limit (MRL; 0.5 mg kg?1) permitted in China, and the HR of cyproconazole was 0.084 mg kg?1, for which no MRL value has been set in China. The chronic risk quotient values of cyproconazole and azoxystrobin for Chinese adults at a 3-day interval to harvest were 2.56% and 13.72%, respectively. The acute risk quotient values of cyproconazole in cucumber were specified as 5.52% for children (1–6 years old) and 2.83% for the adults (>?18 years old) in China. These results indicate that cyproconazole·azoxystrobin 28% SC sprayed on cucumber at the pre-harvest interval of 3 days has no significant potential risk for Chinese consumers. 相似文献
20.
In order to reduce the cadmium potentially available for plants, soil bioaugmentation was performed by using a Bacillus sp. In a pot experimentation, sterilized and non-sterilized soils were inoculated using free or immobilized cells entrapped in alginate beads. This test was carried out with different inoculum sizes (2 x 10(10) and 2 x 10(11)CFU kg(-1) dw of soil) and alginate bead compositions (10 and 15 g of both alginate and CaCl(2) l(-1)). Then, the soil pots were incubated at 20 degrees C and the soil humidity was kept at a level of 20%. After 3 weeks of a batch incubation, the potentially phytoavailable Cd was reduced up to a factor of 14. The bioaugmentation resulted in the soil colonization by Bacillus sp. thanks to an increase of the cell concentration up to 1.8 log units. However, in comparison to the cells being inoculated in a free mode, the immobilization of the cells did not significantly improve the survival of the cells in the soil. Although the resulting effect not being highly pronounced, the potentially phytoavailable Cd correlated with the cell concentration in a surprisingly positive way. What is more, the Bacillus concentrations in the soil were positively correlated with the inoculum, too. 相似文献
|