首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
T. Ikeda  A. Imamura 《Marine Biology》1992,113(4):595-601
The population structure and life cycle of the mesopelagic ostracod Conchoecia pseudodiscophora Rudjakov in Toyama Bay, southern Japan Sea, were investigated using a time-series of samples collected during 0 to 500 m vertical hausls with twin-type Norpac nets (0.35 and 0.10 mm mesh) over one full year (1 February 1990 to 30 January 1991). Additional samples were also collected with a single-type closing Norpac net (0.06 mm mesh) to examine the vertical distribution patterns of eggs and all instars of this species. The proportion of gravid females present indicated that reproduction of C. pseudodiscophora continues throughout the year, but peaks in April–July. Eggs and Instars I and II were distributed below 500 m, while the more advanced instars were most abundant in the 350 to 500 m stratum by both day and night. Based on the abundance peaks of each instar in the time-series samples, development times were estimated to be 2.5, 4, 3, 7 and 11 mo for Instars III, IV, V, VI, and VII, respectively. Thus, a total of 30 mo is required for newly spawned eggs to hatch and reach adulthood. Stomach-fullness indexes revealed no seasonality in the feeding activity of any instar stage, but that feeding activity was low in older instars, particularly in adult males. The present results are compared with those for a few other ostracod species, in an attempt to characterize the life cycle of C. pseudodiscophora inhabiting waters of subzero temperature in the mesopelagic zone of the Japan Sea.  相似文献   

2.
Nitrogen is often provided to impoverished overburden dumps through the establishment of legumes. Low indigenous soil nutrient levels, summer drought conditions and an acidic mining overburden represent major obstacles to successful rehabilitation of open-cut coal mining at Collie in southwest Western Australia. In this study,Acacia pulchella, a native Western Australian species often used in rehabilitation of mined lands, was shown to nodulate and grow in coal mining overburden with pH values less than 4.0 under glasshouse conditions. Plant growth (both top and root dry weight), nodule fresh weight, and nodulation success was best at a pH near 5.0, a value only slightly lower than the typical soil pH of the native jarrah (Eucalyptus marginata) forest. Acetylene reduction rates were reduced by acidity and ranged from 8.2 m C2H4g–1hr–1 at pH 6.77 to 3.0 m C2H4g–1hr–1 at a pH of 3.98. Four additional plant species were found to occur and to nodulate on acid overburden material at Collie.  相似文献   

3.
The nature of protein catabolism in a wide range of species of midwater zooplankton was investigated. The weight-specific ammonia excretion rates (g NH3–N g–1 dry wt h–1, y) decline exponentially with minimum depth of occurreece (MDO, x), y=163.4 x–0.479±0.212 (95%ci) (CI=confidence interval), when temperature is held constant. The change in ammonia excretion can be partially explained by the decrease in percent protein (%P) with MDO, %P=80.17 MDO–0.148±0.122 (95%ci) The atomic O:N ratio of freshly caught zooplankters ranged from 9.1 to 91, with most measurements between 9 and 25. Detailed studies were carried out on the response of one of the species studied (Gnathophausia ingens) to starvation (28 d). After 14 d of starvation the average ammonia excretion rate declined by more than 75% to less than 1 g NH3–N g–1 wet wt h–1, although the average oxygen consumption declined by only 13% within the first 7 d of starvation and then remained stable. This differential response of oxygen consumption and ammonia excretion to starvation resulted in an increase in the average O:N ratio of starved animals from an initial 33 to 165 after 21 d. The average O:N ratios of fed mysids remained below 38 during the experiment. G. ingens maintains a relatively uniform metabolic rate during starvation by relying more heavily on its large lipid stores than when being fed.  相似文献   

4.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

5.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

7.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

8.
S. L. Smith 《Marine Biology》1978,49(2):125-132
During March and April 1976, a red tide, dominated by the dinoflagellate Gymnodinium splendens Lebour, developed in the vicinity of 15°06'S and 75°31'W off Peru. At the height of the bloom, the euphotic zone was 6 m deep and the chlorophyll a at the surface was 48 g l-1. A daily collection of zooplankton at 09.00 hrs showed large fluctuations of biomass, from 0.2 to 3.84 g dry weight m-2 in a water column of 120m. Copepodids and nauplii dominated the collections. During a period of reduced wind, the adult copepods were a mixture of the species characteristic of the coastal upwelling system and the neritic species associated with more northerly, tropical waters. Nitrogen regeneration by the zooplankton varied with the development of the bloom, the type of zooplankton dominating the experiment, and biomass fluctuations, but never accounted for more than 25% of the nitrogen uptake by phytoplankton.  相似文献   

9.
Ammonium excretion rates of recently collected specimens of gelatinous zooplankton, the scyphomedusan Chrysaora quinquecirrha DeSor and the etenophore Mnemiopsis leidyi A. Agassiz, were correlated with body mass and water temperature in measurements made from April to October 1989 and 1990. Rates ranged between 3.5 and 5.0 g atoms NH 4 + -N (g dry wt)-1h-1 for C. quinquecirrha and 3.0 to 4.9 g atoms NH 4 + -N (g dry wt)-1h-1 for M. leidyi. Excretion rate equations and in situ data on the size distributions and biomasses of gelatinous zooplankters and water temperature were used to estimate the contribution of ammonium by medusae and ctenophores to mesohaline Chesapeake Bay waters on several dates during April to October 1989 and 1990. We then compared the estimated contributions to direct measurements of 15NH 4 + uptake by microplankton. The maximum estimated regeneration by gelatinous zooplankton was 5.8 g atoms NH 4 + -N m-3h-1 at night in August 1990, when medusae biomass was greatest. This represents about 4% of the ammonium required by the microplankton. During the daytime on all dates, less than 1% of the ammonium required by microplanktion was supplied by gelatinous zooplankton. Therefore, gelatinous zooplankton appear to play a minor role in the ammonium cycle of Chesapeake Bay.  相似文献   

10.
Several species of Antarctic mesopelagic fishes that have different minimal depths of occurrence but the same environmental temperature were collected in November–December 1983 and in March 1986 between 0 and 1 000 m in the open water near the marginal ice zone in the vicinity of 60°S 40°W (1983) and 65°S 46°W (1986), and oxygen consumption rate (V O 2) and the activity of two metabolic enzymes, lactate dehydrogenase (LDH, an indicator of the anaerobic potential of locomotory muscle) and citrate synthase (CS, an indicator of citric acid cycle activity or aerobic potential), were determined. In four dominant species, whole-individual oxygen-consumption rate (y, ml O2 individual–1 h–1) varied with weight (X, g) according to the equation y=aX b, with b values falling between 0.889 and 1.029. The relation of weight-specific LDH activity (y, U g–1 wet wt) with weight (x, g) was also described by the equation y=aX b, with b values varying between 0.229 and 1.025. Weight-specific CS activity declined with weight, with b values from-0.031 to-0.369. V 2 O, LDH activity and CS activity all declined markedly with increased species' minimum depth of occurrence (the depth below which 90% of a species' population lives). Comparisons with previous studies on ecologically equivalent species of the California Borderland indicate that depth-related decreases in metabolism are the result of adapted traits of deeper-living species, not declining temperature within the water column. The metabolic rate of Antarctic mesopelagic fishes is approximately twice that of California species at equivalent temperatures; similar rates were found at the normal habitat temperatures of the two groups. Thus, a well-developed compensation for temperature is present in the Antarctic fishes: cold adaptation. Differences in enzymic activity among species, and among different sized individuals of a species are related to differences in metabolic rate and locomotory capacity. Enzymic indices can be used to estimate metabolic rates and evaluate ecological parameters such as predatory strategies and niche separation.  相似文献   

11.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

12.
Rates of oxygen consumption, ammonia excretion and phosphate excretion were measured on a hydromedusae (Aglantha digitale), pteropods (Limacia helicina, Clione limacina), copepods (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa), an amphipod (Parathemisto libellula), a euphausiid (Thysanoessa inermis) and a chaetognath (Sagitta elegans), all of which were dominant species in the Barents Sea during early summer 1987. Water and ash contents and elemental composition (C and N) were also analysed on the specimens used in these metabolic experiments. Between species variations were 67.8% to 94.7% of wet weight in water content, 6.4% to 56.5% of dry weight in ash content, 16.7% to 61.0% of dry weight in carbon content, and 4.3% to 11.2% of dry weight in nitrogen content. Oxygen consumption rates ranged from 0.33 to 13.8 l O2 individual-1 h-1, ammonia excretion rates, from 0.0072 to 0.885 gN individual-1 h-1 and phosphate excretion rates, from 0.0036 to 0.33 g P individual-1 h-1. In general, higher rates were associated with larger species, but considerable differences were also seen between species. The ratios between the rates (O : N, N : P, O : P) exhibited a wide species-specific variation, indicating differences in dominant metabolic substrates. Typical protein oriented metabolism was identified only in S. elegans. From the results of metabolic rate measurements and elemental analyses, daily losses of body carbon and nitrogen were estimated to be 0.50 to 4.15% and 0.084 to 1.87%, respectively, showing faster turnover rates of carbon than that of nitrogen. Comparison of daily loss of body carbon of the Barents Sea zooplankton with that of the Antarctic zooplankton indicated reduced rates of the former (63% on average).  相似文献   

13.
The protobranch bivalve Solemya velum Say, 1822 has large gills, which harbor chemolithoautotrophic bacteria that supply the majority of the clams organic carbon. A substantial portion of the CO2, O2, H2S, and other nutrients necessary for symbiont autotrophy and host heterotrophy are acquired from the environment through the gills, whose large size may be necessary to facilitate the acquisition of sufficient O2 from S. velums habitat to meet the combined demands of the host and symbionts. Large gills may also result in an oversupply of CO2, which may in turn be responsible for the isotopically depleted 13C values observed in S. velum biomass (–31 to –34). Alternatively, gill hypertrophy may simply be an adaptation to house a large population of symbionts adjacent to their environmental source of dissolved gases and other nutrients. To better understand gill function in this symbiosis, gill weights, gill surface areas, and foot 13C values were measured as a function of total weights. S. velum gill weights were found to be a substantial portion of total clam weight, averaging 38% of wet weight, compared to nonsymbiotic protobranch bivalves Yoldia limatula Say, 1831 (5%) and Nucula proxima Say, 1822 (11%). Gill weights are a smaller percentage of total weight in larger individuals; the allometric equation for gill weight (G) as a function of total weight (M) is G=0.26M0.85. Dry weights scale similarly. Gill surface areas are immense; the average gill surface area measured was 107 cm2 g–1 total soft tissue wet weight, the highest value for any marine invertebrate. Gill surface area (SA) also scales with size (SA=69.8M0.85). When gill surface areas were calculated with respect to gill wet weights, they did not scale with size. The 13C values do not scale with size either, consistent with high rates of CO2 supply at all sizes. Extraordinarily high rates of CO2 supply relative to demand are supported by a model for CO2 delivery based on Ficks law and the allometric relationship between surface areas and total weight, consistent with a role for large gill surface areas in the generation of isotopically depleted tissue 13C values.Communicated by J. P. Grassle, New Brunswick  相似文献   

14.
Four zooplankton species, three Arthropoda and one Chaetognata, from the Sea of Japan were analyzed in 1984 for eight major and fifteen trace elements, mainly by instrumental neutron activation analysis. Major and trace element contents on a dry weight basis varied little within a factor of 3.7, except for Ca (a factor of 5.7) among the four species. A log-log linearity with a slope of almost-1 was observed between mean oceanic residence time calculated from the mean dissolved river-water input R and the concentration factor with respect to mean seawater concentration (CF SW )for each species. The products of R and CF SW were nearly constant within a factor of 10, except for Br and Sb over seven orders of variation of CF SW for each zooplankton species. It demonstrates a new regularity in trace element contents of marine zooplankton species. This relationship leads to the conclusion that the concentration factors of elements for these zooplankton species with respect to elements for these zooplankton species with respect to mean dissolved river-water concentration (CF RW )are nearly constant within a factor of 10 with average values of 2.98 to 3.43 in logarithm.  相似文献   

15.
We demonstrate the presence of significant genetically based differentiation in growth rate (g dry weight d-1) and reproductive traits (percent reproductive females and mean clutch size g dry weight-1) among females of an harpacticoid copepod (Crustacea),Scottolana canadensis (Willey), taken from a broad range of latitudes and reared in the laboratory under the same conditions. As temperature increases (15°–25° C), the growth rate of southern-derived copepods continues to increase, while that of northern-derived copepods levels off or decreases. Southern-derivedS. canadensis also have a higher percentage of reproducing females at high temperature (25°C) when rations (cells ml-1) are reduced, while northern-derived females are at an advantage at low temperature (15°C). Both life-history traits indicate local adaptation to maximize scope for growth and reproduction at prevailing temperatures. The data support our hypothesis that evolution has occurred to maximize feeding minus metabolic energy expended, and that this maximization requires changes in feeding efficiency with differing temperatures.  相似文献   

16.
The snapping shrimpAlpheus viridari (Armstrong, 1949), the polychaeteTerebellides parva Solis-Weiss, Fauchald and Blankensteyn 1990, and the sipunculanGolfingia cylindrata (Keferstein, 1865) are commonly found in the same mangrove habitat, where they experience frequent, acute fluctuations in temperature and salinity. Ecological studies indicate a temporal variation, including occasional absence, in the distribution of bothG. cylindrata andT. parva; this fed us to examine the physiological adaptations of the three species (collected at Western Bay, Twin Cays, Belize in 1985, 1986 and 1988). Each was subjected to acute, repeated exposure to either control (35 S) and decreased (25 S) salinity or to control and increased (45 S) salinity. Ability to regulate water and ion content (g H2O or mol g-1 solute free dry wt) was examinedA. viridari behaved as a hyperosmotic conformer at decreased salinity but as an osmoconformer at increased salinity. Regardless of direction of salinity change,A. viridari regulated water content through change in Na+, K+, and Cl contents. In contrast,G. cylindrata behaved as an osmoconformer and did not demonstrate ability to regulate water content.T. parva behaved as an osmoconformer, showed incomplete regulation of water content via change in Na+, K+, and Cl contents but had limited survival following exposure to 45 S. Each species was also exposed to change in temperature. Species were subjected to acute, repeated exposure either to control (28°C) and decreased (21°C) temperature or to control and inereased (35°C) temperatureA. viridari regulated water and ion content under both experimental conditions. In contrast,T. parva did not regulate water and ion content under either experimental temperature.G. cylindrata did not regulate water and ion content during exposure to decreased temperature and did not survive exposure to increased temperature. ForA. viridari, weight specific oxygen uptake rates (mg O2 g-1 ash-free dry wt) were determined. Exposure to decreased salinity or to increased temperature resulted in a small sustained elevation in O2 uptake. It is concluded that, unlikeA. viridari, T. parva andG. cylindrata are only marginally adapted to withstand the salinity and temperature stresses, respectively, of the mangrove habitat. The inability ofT. parva andG. cylindrata to fully adapt to extremes in the mangrove habitat could well explain the temporal variation seen in the distribution of these two species.Contribution number 380. Caribbean Coral Reef Ecosystems, National Museum of Natural History, Smithsonian Institution  相似文献   

17.
Photosynthetic performance in the kelp Laminaria solidungula J. Agardh was examined from photosynthesis irradiance (P-I) parameters calculated from in situ 14C uptake experiments, using whole plants in the Stefansson Sound Boulder Patch, Alaskan Beaufort Sea, in August 1986. Rates of carbon fixation were determined from meristematic, basal blade, and second blade tissue in young and adult sporophytes. Differences in saturating irradiance (I k, measured as photosynthetically active radiation, PAR), photosynthetic capacity (P max), and relative quantum efficiency () were observed both between young and adult plants and between different tissue types. I k was lowest in meristematic tissue (20 to 30 E m–2 s–1) for both young and adult plants, but consistently 8 to 10 E m–2 s–1 higher in young plants compared to adults in all three tissues. Average I k for non-meristematic tissue in adult plants was 38 E m–2 s–1. Under saturating irradiances, young and adult plants exhibited similar rates of carbon fixation on an area basis, but under light limitation, fixation rates were highest in adult plants for all tissues. P max was generally highest in the basal blade and lowest in meristematic tissue. Photosynthetic efficiency () ranged between 0.016 and 0.027 mol C cm–2 h–1/E m–2 s–1, and was highest in meristematic tissue. The relatively lower I k and higher exhibited by L. solidungula in comparison to other kelp species are distinct adaptations to the near absence of light during the eight-month ice-covered period and in summer when water turbidity is high. Continuous measurement of in situ quantum irradiance made in summer showed that maximum PAR can be less than 12 E m–2 s–1 for several days when high wind velocities increase water turbulence and decrease water transparency.The Univeristy of Texas Marine Science Institute Contribution No. 695  相似文献   

18.
Gas-liquid interface measurements were conducted in a strongly turbulent free-surface flow (i.e., stepped cascade). Local void fractions, bubble count rates, bubble size distributions and gas-liquid interface areas were measured simultaneously in the air-water flow region using resistivity probes. The results highlight the air-water mass transfer potential of a stepped cascade with measured specific interface area over 650 m–1 and depth-average specific area up to 310 m–1. A comparison between single-tip and double-tip resistivity probes suggests that simple robust single-tip probes may provide accurate, although conservative, gas-liquid interfacial properties. The latter device may be used in the field and in prototype plants. Notation a = specific interface area (m–1); a mean = depth-average specific interface area (m–1): a mean=frac1Y 90limits sup> Y 90 sup 0(1–C)dy; C = local void fraction; C gas = dissolved gas concentration (kg m–3); C mean = depth-average mean air concentration defined as: C mean=1–d/Y 90; C s = saturation concentration (kg m–3); D = dimensionless air bubble diffusivity (defined by [1]); d = equivalent clear-water flow depth (m): d=limits sup> Y 90 sup 0(1–C) dy; dab = air bubble diameter (m); dc = critical flow depth (m); for a rectangular channel: d c=sqrt[3]q w 2/g; F = air bubble count rate (Hz); F max = maximum bubble count rate (Hz), often observed for C=50%; g = gravity acceleration (m s–2); h = step height (m); K L = liquid film coefficient (m s–1); K = integration constant defined as: K=tanh –1 sqrt0.1)+(2D)–1 [1]; L = chute length (m); N = velocity distribution exponent; ———– *Corresponding author, E-mail: h.chanson@mailbox.uq.edu.au Q w = water discharge (m3 s–1); q w = water discharge per unit width m2 s–1); t = time (s); V = local velocity (m s–1); V c = critical flow velocity (m s–1); for a rectangular channel: V c=sqrt[3]q w g V max = maximum air-water velocity (m s–1); V 90 = characteristic air-water velocity (m s–1) where C = 90%; W = channel width (m); x = longitudinal distance (m) measured along the flow direction (i.e., parallel to the pseudo-bottom formed by the step edges); y = distance (m) normal to the pseudo-bottom formed by the step edges; Y90 = characteristic distance (m) where C=0.90; Y 98 = characteristic distance (m) where C=0.98; = slope of pseudo-bottom by the step edges; = diameter (m).  相似文献   

19.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

20.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号