首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical model for the crosswind integrated concentrations released from a continuous source in a finite atmospheric boundary layer is formulated by considering the wind speed as a power law profile of vertical height above the ground and eddy diffusivity as an explicit function of downwind distance from the source and vertical height. A closed form analytical solution of the resulting advection–diffusion equation for these profiles of wind speed and eddy diffusivity with the physically relevant boundary conditions is derived using the separation of variables technique that leads to a Sturm–Liouville eigen value problem. Various particular cases of the model are deduced.The model is evaluated with the observations obtained from Prairie Grass experiment in various stability classes varying from very unstable to neutral and stable conditions and Hanford diffusion experiment in stable conditions. The agreement is found to be good between the computed and observed concentrations in both the diffusion experiments. For Prairie Grass experiment, the model is predicting 78% cases with in a factor of two and gives a value of NMSE as 0.075. On the other hand, for Hanford observations in stable conditions, it predicts 70% cases with in factor of two. An extensive analysis of statistical measures with the downwind distances from the source reveals that the model is performing well close to the source.  相似文献   

2.
A thermodynamic approach was taken to assess the state of equilibrium between air and the Earth’s surface for PCBs at a variety of sites located in urban and rural areas. The Clausius–Clapeyron equation was applied to atmospheric PCB data, relating PCB partial vapour pressure (ln P) to inverse temperature (1/K); essentially representing the temperature controlled transition between condensed phases and the atmospheric gas phase. The slopes of the resulting plots ranged from −3100 to −8272 for a range of congeners at two city sites, significantly steeper than those generated at two rural locations, where there was little or no correlation between ln P and temperature. It was inferred that advection and variable meteorological conditions mask any localised, temperature dependent, air–surface exchange at these rural locations when weekly or two weekly integrated samples were taken. At a third rural site, close to Lancaster University, an intensive highly time-resolved sampling regime, carried out during very stable meteorological conditions resulted in highly correlated plots (r2>0.6), with slopes ranging from −7151 to −14 148 for different congeners. By reducing meteorological variables in this manner localised temperature controlled air–surface exchange became evident. Enthalpies of phase change generated from the temperature coefficients were similar to literature values for the enthalpy of vapourisation and the enthalpy of phase change from octanol to air. This suggests that, under these stable conditions, equilibrium was achieved as a function of either vapour pressure (P°L) or the octanol–air partition coefficient (KOA).  相似文献   

3.
The intent of this paper is to relate the magnitude of the error bounds of data, used as inputs to a Gaussian dispersion model, to the magnitude of the error bounds of the model output, which include the estimates of the maximum concentration and the distance to that maximum. The research specifically addresses the uncertainty in estimating the maximum concentrations from elevated buoyant sources during unstable atmospheric conditions, as these are most often of practical concern in regulatory decision making. A direct and quantitative link between the nature and magnitude of the input uncertainty and modeling results has not been previously investigated extensively. The ability to develop specific error bounds, tailored to the modeling situation, allows more informed application of the model estimates to the air quality issues.In this study, a numerical uncertainty analysis is performed using the Monte-Carlo technique to propagate the uncertainties associated with the model input. Uncertainties were assumed to exist in four model input parameters: (1) wind speed, (2) standard deviation of lateral wind direction fluctuations, (3) standard deviation of vertical wind direction fluctuations, and (4) plume rise. For each simulation, results were summarized characterizing the uncertainty in four features of the ground-level concentration pattern predicted by the model: (1) the magnitude of the maximum concentration, (2) the distance to the maximum concentration, and (3) and (4) the areas enclosed within the isopleths of 50% and 25% of the error-free estimate of maximum concentration.The authors conclude that the error bounds for the estimated maximum concentration and the distance to the maximum can be double that of the error bounds for individual model input parameters. The model output error bounds for the areas enclosed within isopleth values can be triple the error bounds of the input. It was not our intent to cover all possible combinations for the error in the input parameters. Ours was a much more limited goal of providing a lower bound estimate of model uncertainty in which we assume the input is reasonably well characterized and there is no bias in the input. These results allow estimation of minimum bounds on errors in model output when considering reasonable input error bounds.  相似文献   

4.
5.
The aim of this work is to investigate atmospheric flow and dispersion of contaminants in the vicinity of single buildings under different stability conditions. The mathematical model used is based on the solution of equations of conservation of mass, linear momentum and energy with the use of a non-standard κ? turbulence model. The modifications proposed in the κ? model are the inclusion of the Kato and Launder correction in the production of turbulent kinetic energy and the use of a modified wall function. Results are presented of numerical simulations of dispersion around a cubical obstacle, under neutral, stable and unstable atmospheric conditions. Experimental data from wind tunnel and field trials obtained by previous authors are used to validate the numerical results. The numerical simulation results show a reasonable level of agreement with field and wind tunnel concentration data. The deviation between model results and field experimental data is of the same order as the deviation between field and wind tunnel data.  相似文献   

6.
The digital opacity compliance system (DOCS) has been proposed as an alternative to the U.S. Environmental Protection Agency Reference Method 9 (Visual Determination of the Opacity of Emissions for Stationary Sources). The DOCS, which employs standard digital photography to estimate the opacity of visible emissions, was evaluated in a high mountain desert environment located in Weber County, UT. The DOCS recorded an average opacity deviation of 5.28% when applied to black smoke plumes having true opacities in the range of 0-100%, an error rate that was found to be significantly less than 7.5% (allowable error rate for attaining certification under Method 9). In contrast, results from estimating the opacity of white smoke plumes indicated that the accuracy of the DOCS was less than the Method 9 error rate only in the opacity range of 0-60%, over which the DOCS average opacity deviation was determined to be 6.7%. For the 0-40% opacity range, the DOCS recorded an average opacity deviation of 5.44% and 5.9% for black and white plumes, respectively. Results from the present study suggest that the DOCS has the potential to quantify visible opacity with an error rate that is significantly less than the Method 9 permissible error rate. Although encouraging, it is unclear to what extent the DOCS is affected by climatic conditions other than those encountered in a dry desert environment. Future studies should focus on evaluating the performance of the DOCS under variable weather conditions.  相似文献   

7.
Abstract

The digital opacity compliance system (DOCS) has been proposed as an alternative to the U.S. Environmental Protection Agency Reference Method 9 (Visual Determination of the Opacity of Emissions for Stationary Sources). The DOCS, which employs standard digital photography to estimate the opacity of visible emissions, was evaluated in a high mountain desert environment located in Weber County, UT. The DOCS recorded an average opacity deviation of 5.28% when applied to black smoke plumes having true opacities in the range of 0–100%, an error rate that was found to be significantly less than 7.5% (allowable error rate for attaining certification under Method 9). In contrast, results from estimating the opacity of white smoke plumes indicated that the accuracy of the DOCS was less than the Method 9 error rate only in the opacity range of 0–60%, over which the DOCS average opacity deviation was determined to be 6.7%. For the 0–40% opacity range, the DOCS recorded an average opacity deviation of 5.44% and 5.9% for black and white plumes, respectively.

Results from the present study suggest that the DOCS has the potential to quantify visible opacity with an error rate that is significantly less than the Method 9 permissible error rate. Although encouraging, it is unclear to what extent the DOCS is affected by climatic conditions other than those encountered in a dry desert environment. Future studies should focus on evaluating the performance of the DOCS under variable weather conditions.  相似文献   

8.
Equilibrium gas phase concentration of ammonia in dilute solution has been measured as a function of total ammonia + ammonium concentration (0.002–0.10 M), pH (6–10) and temperature (278.8−290.6 K). Henry's Law is obeyed under these conditions and may be expressed as In KH(M atm−1) = 4092/T −9.70 with a relative standard error of less than 5 %, in good agreement with NBS thermodynamic data. Convenient generation of trace levels of ammonia (1.33 × 10−8–7.77 × 10−4 atm) using a porous membrane tube is described.  相似文献   

9.
The atmospheric oxidation of several terpenes appears to be a potentially relevant source of acetone in the atmosphere. Proton-transfer-reaction mass spectrometry was used as an on-line analytical method in a chamber study to measure acetone and other gas phase products from the oxidation of α- and β-pinene initiated by OH radicals in air and in the presence of NOx.Acetone may be formed promptly, following attack by the OH radical on the terpene, via a series of highly unstable radical intermediates. It can also be formed by slower processes, via degradation of stable non-radical intermediates such as pinonaldehyde and nopinone.Primary acetone and pinonaldehyde molar yields of 11±2% (one σ) and 34±9% (one σ), respectively, were found from the reaction between α-pinene and the OH radical. After all α-pinene had been consumed, an additional formation of acetone due to the degradation of stable non-radical intermediates was observed. The total amount of acetone formed was 15±2% (one σ) of the reacted α-pinene. An upper limit of 12±3% (one σ) for the acetone molar yield from the oxidation of pinonaldehyde was established.From the reaction between β-pinene and the OH radicals, primary acetone and nopinone molar yields of 13±2% (one σ) and 25±3% (one σ), respectively, were observed. Additional amounts of acetone were formed by the further degradation of the primary product, such as the most abundant product nopinone. The total amount of acetone formed was 16±2% (one σ) of the reacted β-pinene. An upper limit of 12±2% (one σ) for the acetone molar yield from the oxidation of nopinone was established.The observed product yields from α- and β-pinene are in good agreement with other studies using mass-spectrometric and gas chromatographic analytical techniques, but differ significantly from previous studies using spectroscopic methods. Possible reasons for the discrepancies are discussed.  相似文献   

10.
A new urban parameterization for a fast-running dispersion prediction modeling system suitable for emergency response situations is introduced. The parameterization represents the urban convective boundary layer in the dispersion prediction system developed by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory. The performance of the modeling system is tested with data collected during the field campaign Joint Urban 2003 (JU03), held in July 2003 in Oklahoma City, Oklahoma. Tests were performed using data from three intense operating periods held during daytime slightly unstable to unstable conditions. The system was run in operational mode using the meteorological data that would be available operationally at NARAC to test its effectiveness in emergency response conditions. The new parameterization considerably improves the performance of the original modeling system, by producing a better degree of pattern of correspondence between predictions and observations (as measured by Taylor diagrams), considerably reducing bias, and better capturing directional effects resulting in plume predictions whose shape and size better resemble the observations (via the measure of effectiveness). Furthermore, the new parameterization shows similar skills to urban modeling systems of similar or greater complexity. The parameterization performs the best at the three JU03 sensor arcs (1, 2, and 4 km downwind the release points), with fractional bias values ranging from 0.13 to 0.4, correlation values from 0.45 to 0.71, and centered root-mean-square error being reduced more than 50% in most cases. The urban parameterization has been tested with grid increments of 125, 250, 500 and 1000 m, performing best at 250 and 500 m. Finally, it has been found that representing the point source by a Gaussian distribution with an initial spread of particles leads to a better representation of the initial spread induced by near-source buildings, resulting in lower bias and improved correlation in downtown Oklahoma City.  相似文献   

11.
The detrainment behaviour of contaminants in the wake of an isolated building was investigated in the field under atmospheric stability conditions ranging from very stable to very unstable. The model building used was a 2 m cube and two orientations were investigated, with the cube either normal or at 45° to the wind. Tracer gas was first entrained into the wake from a source located a short distance upwind of the cube, the gas being released continuously for a limited period in order to fill the wake. Thereafter, the source was switched off, and the concentration (measured using several fast-response gas detectors located in the wake) was observed to decay in an exponential manner. This procedure was repeated in a total of 118 experiments to provide confidence in statistics. The residence time (Td), which is defined as the time it takes for the concentration to decay to 1/e of its original value, was measured. The decay duration (t), which is the time it takes for the gas to become fully detrained from the wake, was found to be greater in stable atmospheric conditions, mainly due to the lower wind speeds and higher concentrations observed under these conditions. However, the non-dimensional residence time (τ) was found to be independent of atmospheric stability. The values of τ for a cube normal (τ=6.2) or at 45° to the flow (τ=9.5) are in very good agreement with values calculated using empirical formulae derived from wind tunnel experiments.  相似文献   

12.
Abstract

A method for predicting the performance of packed columns that control gaseous air pollutants has been developed that exploits the advances in both computer software and hardware commonly used by practicing engineers. The solution of the simultaneous partial differential equations that describe the absorption process in packed columns that occurs in the presence of chemical reaction is obtained by converting the partial differential equations to systems of ordinary differential equations. These systems of ordinary differential equations are then solved using the method of lines along with a variable step, variable order numerical method. The method is applicable to systems in which there are multiple reactions within the liquid phase. The reactions can be of any order and can be reversible. The programming is simple and the machine running time is minimal. The method is illustrated here with an example.  相似文献   

13.
A previously obtained analytical solution to model the short-range dispersion of pollutants in low winds from surface releases has been used to simulate diffusion tests conducted during winter in weakly convective conditions at the Indian Institute of Technology (IIT) Delhi. The turbulence parameterization based on friction velocity has been tested to simulate diffusion experiment. Such a parameterization in this study is considered justifiable on two counts: (1) prevailing meteorological and dispersion conditions have been generally of weakly unstable type as indicated by values of Monin–Obukhov length and bulk Richardson number, (2) uncertainties associated with the application of convective velocity based similarity parameterization to simulation of diffusion experiment at IIT Delhi, resulting in significant underprediction in most of the cases (Atmos. Environ. 30 (1996a) 1137). With this parameterization, the model simulations have improved considerably and compare reasonably well with the observations. Further, the results from a simple Gaussian model have been included for comparison. This study is in continuation of the work done earlier to simulate near-source dispersion in weak winds.  相似文献   

14.
The evaluation of the high percentiles of concentration distributions is required by most national air quality guidelines, as well as the EU directives. However, it is problematic to compute such high percentiles in stable, low wind speed or calm conditions. This study utilizes the results of a previous measurement campaign near a major road at Elimäki in southern Finland in 1995, a campaign specifically designed for model evaluation purposes. In this study, numerical simulations were performed with a Gaussian finite line source dispersion model CAR-FMI and a Lagrangian dispersion model GRAL, and model predictions were compared with the field measurements. In comparison with corresponding results presented previously in the literature, the agreement of measured and predicted data sets was good for both models considered, as measured using various statistical parameters. For instance, considering all NOx data (N=587), the so-called index of agreement values varied from 0.76 to 0.87 and from 0.81 to 1.00 for the CAR-FMI and GRAL models, respectively. The CAR-FMI model tends to slightly overestimate the NOx concentrations (fractional bias FB=+14%), while the GRAL model has a tendency to underestimate NOx concentrations (FB=−16%). The GRAL model provides special treatment to account for enhanced horizontal dispersion in low wind speed conditions; while such adjustments have not been included in the CAR-FMI model. This type of Lagrangian model therefore predicts lower concentrations, in conditions of low wind speeds and stable stratification, in comparison with a standard Lagrangian model. In low wind speed conditions the meandering of the flow can be quite significant, leading to enhanced horizontal dispersion. We also analyzed the difference between the model predictions and measured data in terms of the wind speed and direction. The performance of the CAR-FMI model deteriorated as the wind direction approached a direction parallel to the road, and for the lowest wind speeds. However, the performance of the GRAL model varied less with wind speed and direction; the model simulated better the cases of low wind speed and those with the wind nearly parallel to the road.  相似文献   

15.
Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R?=?4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via “para” comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R?=?6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R?=?6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH?=?3.0, whereas operating in stoichiometric conditions, R?=?14.0, the residual turbidity of water results almost null.  相似文献   

16.
Lee WM  Ha SW  Yang CY  Lee JK  An YJ 《Chemosphere》2011,82(3):451-459
We characterized fluorescent silica nanoparticles (FNPs), which had been applied in many biological systems, in fish embryo rearing media (ERM) solution and evaluated the potential toxicity to the early development of Oryzias latipes embryos. Distribution of FNPs in embryos and larvae of O. latipes was studied by fluorescent and confocal laser scanning microscopic studies. Embryos exposed to three different concentrations of FNPs in stirred or sonicated ERM solutions were observed up to 2 d after hatching. FNPs had a negligible effect on the hatchability of O. latipes embryos; however, compared to controls, more than 30% of eggs were abnormal in 10 and 50 mg FNP L−1 solutions. We found that the toxic effect was increased in sonicated FNP solution, which seems to be related with the dissolution of FNPs in ERM solutions that could be accelerated by sonication. Further study found that the CaCl2 included in ERM solution might enhance the dissolution of the FNPs and the silicate ion released from FNPs partially contributed to larval toxicity. This study showed that some nanoparticles may not be stable in biological fluids even if they are stable in water. Dissolution factors such as sonication and cellular components should be considered in biological application of nanoparticles.  相似文献   

17.
A method for predicting the performance of packed columns that control gaseous air pollutants has been developed that exploits the advances in both computer software and hardware commonly used by practicing engineers. The solution of the simultaneous partial differential equations that describe the absorption process in packed columns that occurs in the presence of chemical reaction is obtained by converting the partial differential equations to systems of ordinary differential equations. These systems of ordinary differential equations are then solved using the method of lines along with a variable step, variable order numerical method. The method is applicable to systems in which there are multiple reactions within the liquid phase. The reactions can be of any order and can be reversible. The programming is simple and the machine running time is minimal. The method is illustrated here with an example.  相似文献   

18.
An analytical solution is presented for one-dimensional vertical transport of volatile chemicals through the vadose zone to groundwater. The solution accounts for the important transport mechanisms of the steady advection of water and gas, diffusion and dispersion in water and gas, as well as adsorption, and first-order degradation. By assuming a linear, equilibrium partitioning between water, gas and the adsorbed chemical phases, the dependent variable in the mathematical model becomes the total resident concentration. The general solution was derived for cases having a constant initial total concentration over a discrete depth interval and a zero initial total concentration elsewhere. A zero concentration gradient is assumed at the groundwater table. Examples are given to demonstrate the application of the new solution for calculating the case of a non-uniform initial source concentration, and estimating the transport of chemicals to the groundwater and the atmosphere. The solution was also used to verify a numerical code called VLEACH. We discovered an error in VLEACH, and found that the new solution agreed very well with the numerical results by corrected VLEACH. A simplified solution to predict the migration of volatile organic chemical due to the gas density effect has shown that a high source concentration may lead to significant downward advective gas-phase transport in a soil with a high air-permeability.  相似文献   

19.
Isolation of the polychlorinated biphenyls (PCB's) from sea mullet (Mugil cephalus) collected in the Brisbane River estuary indicated that these corresponded approximately to the Arochlor Grade 1260, although minor amounts of Grade 1254 were present. However the composition of the isolates similar to the 1260 Grade in all cases exhibited marked differences between the proportions of individual components present in the original mixture as compared to the mixture found in the fish. The number of chlorines in a PCB compound has an influence on bioconcentration, but with isomers it is suggested that variable uptake of the different PCB's occurs principally as a result of steric effects relating to the orientation of the two phenyl rings and the patterns of substitution of chlorine. A Steric Effect Coefficient has been empirically developed which correlates closely with relative uptake of PCB isomers.  相似文献   

20.
Road transport is often the main source of air pollution in urban areas, and there is an increasing need to estimate its contribution precisely so that pollution-reduction measures (e.g. emission standards, scrapage programs, traffic management, ITS) are designed and implemented appropriately. This paper presents a meta-analysis of 50 studies dealing with the validation of various types of traffic emission model, including ‘average speed’, ‘traffic situation’, ‘traffic variable’, ‘cycle variable’, and ‘modal’ models. The validation studies employ measurements in tunnels, ambient concentration measurements, remote sensing, laboratory tests, and mass-balance techniques. One major finding of the analysis is that several models are only partially validated or not validated at all. The mean prediction errors are generally within a factor of 1.3 of the observed values for CO2, within a factor of 2 for HC and NOx, and within a factor of 3 for CO and PM, although differences as high as a factor of 5 have been reported. A positive mean prediction error for NOx (i.e. overestimation) was established for all model types and practically all validation techniques. In the case of HC, model predictions have been moving from underestimation to overestimation since the 1980s. The large prediction error for PM may be associated with different PM definitions between models and observations (e.g. size, measurement principle, exhaust/non-exhaust contribution).Statistical analyses show that the mean prediction error is generally not significantly different (p < 0.05) when the data are categorised according to model type or validation technique. Thus, there is no conclusive evidence that demonstrates that more complex models systematically perform better in terms of prediction error than less complex models. In fact, less complex models appear to perform better for PM. Moreover, the choice of validation technique does not systematically affect the result, with the exception of a CO underprediction when the validation is based on ambient concentration measurements and inverse modelling. The analysis identified two vital elements currently lacking in traffic emissions modelling: 1) guidance on the allowable error margins for different applications/scales, and 2) estimates of prediction errors. It is recommended that current and future emission models incorporate the capability to quantify prediction errors, and that clear guidelines are developed internationally with respect to expected accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号