首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

2.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

3.
Aluminium (Al) is one of the trace inorganic metals present in atmospheric particles. Al speciation study is essential to better evaluate the mobility, availability, and persistence of trace Al and Al species in the atmosphere. This paper reports Al distribution and speciation in atmospheric particles with aerodynamic diameters >10.0, 10.0–2.5 and <2.5 μm in the urban area of Nanjing, China. Urban particles were collected with a high-volume sampling system equipped with a cascade impactor, which effectively separates the particulate matter into three size ranges. Particulate Al was fractionated into five different forms (insoluble, oxide, organic, carbonate, and exchangeable species) by the modified five-step Tessier's sequential extraction procedure. The main points are as follows: (1) The average levels of Al in PM2.5, PM2.5–10 and PM>10 are 2.02±0.35, 3.04±0.43 and 6.32±0.76 μg m−3, respectively, with PM2.5, PM2.5–10 and PM>10 constituting respectively, 17.8±3.1%, 26.7±3.8% and 55.5±6.7% of suspended particulate matter (SPM) mass (11.38 μg m−3). (2) The vertical profile of airborne Al in the above three size fractions has been estimated. A significant increase in airborne Al concentrations was found for PM2.5, PM2.5–10 and PM>10 as the sampling height above the ground increased from 2.5 to 17.5 m; however, there was an obvious decrease in airborne Al concentrations between 17.5 and 40.0 m. The maximum mean of total Al in PM2.5, PM2.5–10 and PM>10 occurred between 12.5 and 20.0 m above the ground. (3) The distribution of Al speciation was studied. It was found that the size distribution of airborne Al species followed the order: insoluble species>oxide species>organic species>carbonate species>exchangeable species.  相似文献   

4.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

5.
During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L−1) was substantially higher than total mercury content in diesel fuel (62±37 ng L−1) collected contemporaneously at local Baltimore retailers.  相似文献   

6.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

7.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

8.
Fine particulate matter (PM2.5) was sampled at 5 Spanish locations during the European Community Respiratory Health Survey II (ECRHS II). In an attempt to identify and quantify PM2.5 sources, source contribution analysis by principal component analysis (PCA) was performed on five datasets containing elemental composition of PM2.5 analysed by ED-XRF. A total of 4–5 factors were identified at each site, three of them being common to all sites (interpreted as traffic, mineral and secondary aerosols) whereas industrial sources were site-specific. Sea-salt was identified as independent source at all coastal locations except for Barcelona (where it was clustered with secondary aerosols). Despite their typically dominant coarse grain-size distribution, mineral and marine aerosols were clearly observed in PM2.5. Multi-linear regression analysis (MLRA) was applied to the data, showing that traffic was the main source of PM2.5 at the five sites (39–53% of PM2.5, 5.1–12.0 μg m−3), while regional-scale secondary aerosols accounted for 14–34% of PM2.5 (2.6–4.5 μg m−3), mineral matter for 13–31% (2.4–4.6 μg m−3) and sea-salt made up 3–7% of the PM2.5 mass (0.4–1.3 μg m−3). Consequently, despite regional and climatic variability throughout Spain, the same four main PM2.5 emission sources were identified at all the study sites and the differences between the relative contributions of each of these sources varied at most 20%. This would corroborate PM2.5 as a useful parameter for health studies and environmental policy-making, owing to the fact that it is not as subject to the influence of micro-sitting as other parameters such as PM10. African dust inputs were observed in the mineral source, adding on average 4–11 μg m−3 to the PM2.5 daily mean during dust outbreaks. On average, levels of Al, Si, Ti and Fe during African episodes were higher by a factor of 2–8 with respect to non-African days, whereas levels of local pollutants (absorption coefficient, S, Pb, Cl) showed smaller variations (factor of 0.5–2).  相似文献   

9.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

10.
Sources of carbonaceous aerosols collected from three sites of Chattanooga, TN (CH), Muscle Shoals, AL (MS), and Look Rock, TN (LR) in the Tennessee Valley Region (TVR) were apportioned using both organic tracer-based chemical mass balance (CMB) modeling and radiocarbon (14C) measurement and the results were compared. Eight sources were resolved by CMB, among which wood combustion (averaging 0.92 μg m−3) was the largest contributor to primary organic carbon (OC) concentrations, followed by gasoline exhaust (0.35 μg m−3), and diesel exhaust (0.18 μg m−3). The identified primary sources accounted for 43%, 71%, and 14% of measured OC at CH, MS, and LR, respectively. Contributions from the eight primary sources resolved by CMB could explain 107±10% of ambient elemental carbon (EC) concentrations, with diesel exhaust (66±32%) and wood combustion (37±33%) as the most important contributors. The fossil fractions in total carbon determined by 14C measurements were in reasonably good agreement with that in primary (OC+EC) carbon apportioned by CMB in the MS winter samples. The comparison between the 14C and CMB results revealed that contemporary sources dominated other OC in the TVR, especially in summertime (84% contemporary).  相似文献   

11.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

12.
A simulated burning experiment was conducted in a tubular furnace system to examine the emission of polycyclic aromatic hydrocarbons (PAHs) from the burning of rice and bean straw, and the influence of combustion parameters was investigated. Total emission amounts of 16 PAHs (∑PAHs) from the burning of rice and bean straw ranged from 9.29 to 23.6 μg g?1 and from 3.13 to 49.9 μg g?1, respectively, which increased with the increase of temperatures from 200 to 700 °C. The contribution of combustion to individual PAH yields was about 80.6–100%, which was generally increased with the increase of burning temperature. Moisture content in straw had a negative effect on PAH formation, especially on PAHs with low molecular weight. ∑PAHs emission amounts decreased by 78.2% for bean straw with a moisture content of 30% in comparison with that for dried straw. In addition, PAH emission amounts increased with the increase of O2 content in supplied air and then decreased, which showed a maximum emission at O2 content of 40%. The source fingerprint of PAHs in emission from straw burning was established, which showed that naphthalene accounted for 35.0 ± 7.4% of ∑PAHs. Based on the experimental data, emission amounts of ∑PAHs from the burning of rice and bean straw were estimated to be 320–357 and 32.5–76.0 tons to ambient air per year in China, respectively.  相似文献   

13.
Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM10, PM2.5, and PM1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m−3 for coarse (TSP–PM10), intermediate (PM10–PM2.5), fine (PM2.5–PM1), and very fine particles (PM1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles (r=0.10, p=0.58), moderate for the intermediate particles (r=0.49, p<0.01) but strong for fine (r=0.89, p<0.01) and very fine (r=0.90, P<0.01) particles. PM10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.  相似文献   

14.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

15.
Emission factors (EFs) of pollutants from post-harvest agricultural burning are required for predicting downwind impacts of smoke and inventorying emissions. EFs of polycyclic aromatic hydrocarbons (PAH), methoxyphenols (MP), levoglucosan (LG), elemental carbon (EC) and organic carbon (OC) from wheat and Kentucky bluegrass (KBG) stubble burning were quantified in a US EPA test burn facility. The PAH and MP EFs for combined solid+gas phases are 17±8.2 mg kg−1 and 79±36 mg kg−1, respectively, for wheat and 21±15 mg kg−1 and 35±24 mg kg−1, respectively, for KBG. LG, particulate EC and artifact-corrected OC EFs are 150±130 mg kg−1, 0.35±0.16 g kg−1 and 1.9±1.1 g kg−1, respectively, for wheat and 350±510 mg kg−1, 0.63±0.056 g kg−1 and 6.9±0.85 g kg−1, respectively, for KBG. Positive artifacts associated with OC sampling were evaluated and remedied with a two-filter system. EC and OC accounted for almost two-thirds of PM2.5 mass, while LG accounted for just under 3% of the PM2.5 mass. Since EFs of these pollutants generally decreased with increasing combustion efficiency (CE), identifying and implementing methods of increasing the CEs of burns would help reduce their emissions from agricultural field burning. PAH, OC and EC EFs are comparable to other similar studies reported in literature. MP EFs appear dependent on the stubble type and are lower than the EFs for hard and softwoods reported in literature, possibly due to the lower lignin content in wheat and KBG.  相似文献   

16.
The concentrations of PM2.5−10, PM2.5 and associated water-soluble inorganic species (WSIS) were determined in a coastal site of the metropolitan region of Rio de Janeiro, Southeastern Brazil, from October 1998 to September 1999 (n=50). Samples were dissolved in water and analyzed for major inorganic ions. The mean (± standard deviation; median) concentrations of PM2.5−10 and PM2.5 were, respectively, 26 (± 16; 21) μg m−3 and 17 (± 13; 14) μg m−3. Their mean concentrations were 1.7–1.8 times higher in dry season (May–October) than in rainy season (November–April). The WSIS comprised, respectively, 34% and 28% of the PM2.5−10 and PM2.5 masses. Chloride, Na+ and Mg2+ were the predominant ions in PM2.5−10, indicating a significant influence of sea-salt aerosols. In PM2.5, SO42− (∼97% nss-SO42−) and NH4+ were the most abundant ions and their equivalent concentration ratio (SO42−/NH4+ ∼1.0) suggests that they were present as (NH4)2SO4 particles. The mean concentration of (NH4)2SO4 was 3.4 μg m−3. The mean equivalent PM2.5 NO3 concentration was eight times smaller than those of SO42− and NH4+. The PM2.5 NO3 concentration in dry season was three times higher than in rainy season, probably due to reaction of NaCl (sea salt) with HNO3 as a result of higher levels of NOy during the dry season and/or reduced volatilization of NH4NO3 due to lower wintertime temperature. Chloride depletion was observed in both size ranges, although more pronouncely in PM2.5.  相似文献   

17.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

18.
This study conducted roadside particulate sampling to measure the total suspended particulate (TSP), PM10 (particles <10 μm in aerodynamic diameter) and PM2.5 (particles <2.5 μm in aerodynamic diameter) mass concentration in 11 urbanized and densely populated districts in Hong Kong. One hundred and thirty-three samples were obtained to measure the mass concentrations of TSP, PM10 and PM2.5. According to these results, the TSP, PM10 and PM2.5 mass concentrations varied from 94.85 to 301.63 μg m−3, 67.67 to 142.68 μg m−3 and 50.01 to 125.12 μg m−3, respectively. The PM2.5/PM10 ratio of all samples was 0.82 which ranged from 0.62 to 0.95. The PM levels and PM ratios in metropolitan Hong Kong significantly fluctuated from site-to-site and over time. The PM2.5 mass concentration in different districts corresponding to urban industrial, new town, urban residential and urban commercial were 77.64, 87.50, 106.96 and 88.54 μg m−3, respectively. The PM2.5 level is high in Hong Kong, and for individual sampling, more than 60% daily measurements exceeded the NAAQS. The mass fraction of PM2.5 in PM10 and TSP is relatively high when compared with overseas studies.  相似文献   

19.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

20.
Amounts of polycyclic aromatic hydrocarbons (PAHs) and oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in samples collected from the air, from the dust on a guardrail, and from the soils on a tunnel roadway at five sampling sites in a regular roadway tunnel were chemically analyzed in order to determine their sources. Among the 23 PAHs found in the air samples, pyrene was found in the highest concentration (43±7.2 ng/m3), followed by fluoranthene (26±4.3 ng/m3). Among 20 oxy-PAHs found in the air samples, anthraquinone was found in the greatest amount (56±3.9 ng/m3). The average concentration of the major PAHs found in the guardrail dust samples were 6.9±0.77 μg/g for pyrene, 5.5±0.76 μg/g for fluoranthene, and 2.6±0.30 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the guardrail dust samples were 9.2±3.5 μg/g for anthraquinone and 1.4±0.50 μg/g for 2-methylanthraquinone. The average concentration of the major PAHs found in the soil samples were 1.1±0.31 μg/g for fluoranthene, 0.92±0.21 μg/g for pyrene, and 0.72±0.16 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the soil samples were 1.2±0.88 μg/g for anthraquinone, 0.18±0.04 μg/g for 4-biphenylcarboxaldehyde, and 0.13±0.08 μg/g for 2-methylanthraquinone. The BeP ratios calculated from the results suggest that most PAHs found in the samples collected from the roadway tunnel were from automobile exhaust gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号