首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of black carbon (BC) aerosol radiative forcing on spring rainfall in Southeast Asia are studied using numerical simulations with the NASA finite-volume General Circulation Model (fvGCM) forced with monthly varying three-dimensional aerosol distributions from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART).During the boreal spring, March–April–May (MAM), BC from local emissions accumulates over Southeast Asia. The BC aerosol layer, which extends from the surface to higher elevation above planetary boundary layer (PBL), absorbs solar radiation and heats the mid-troposphere through a semi-direct effect over regions of large aerosol optical thickness (AOT) and thereby significantly perturbs large-scale and meridional circulations. Results show that anomalous precipitation patterns and associated large-scale circulations induced by radiative forcing by BC aerosol can explain observed precipitation reductions, especially over Southeast Asia. Therefore, BC aerosol forcing may be one of the important factors affecting the spring rainfall trend over Southeast Asia.  相似文献   

2.
The special and temporal characteristics of aerosol optical depth (AOD) and Angstrom wavelength exponent (Alpha) and their relationship with aerosol chemical compositions were analyzed by using the data of CE318 sun-photometer and aerosol sampling instruments at Lin'an, Shangdianzi and Longfengshan regional atmospheric background stations. Having the highest AOD among the three stations, Lin'an shows two peaks in a year. The AOD at Shangdianzi station shows a single annual peak with an obvious seasonal variation. The AOD at Longfengshan station has obvious seasonal variation which peaks in spring. The Alpha analysis suggests that the aerosol sizes in Lin'an, Longfengshan and Shangdianzi change from fine to coarse categories. The relationship between the aerosol optical depths of the Lin'an and Longfengshan stations and their chemical compositions is not significant, which suggests that there is not a simple linear relationship between column aerosol optical depth and the near surface chemical compositions of atmospheric aerosols. The aerosol optical depth may be affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere.  相似文献   

3.
A negative trend is being revealed in the MODIS aerosol optical depth [AOD] observed over the Southern Balkan/Eastern Mediterranean region. Collection 005 MODIS/Terra and MODIS/Aqua AOD at 470 nm measurements were evaluated against Brewer ground-based measurements over Thessaloniki, Greece and CIMEL ground-based measurements of AOD over Heraklion, Crete. A detailed study of the monthly, seasonal and inter-annual variability of the MODIS/Terra and MODIS/Aqua AOD values over selected locations around the Balkan Peninsula showed that the higher mean AOD values occurred in the spring and summer months, whereas the lowest were found in the winter-time. For all seasons, the highest AODs were observed for the northern-most latitudes with a marked decrease towards the southern-most sites. A statistically significant decreasing trend in aerosol load in the region over all sites as derived from the MODIS/Terra measurements gave the highest per annum change seen for the summer months to be ?4.09 ± 2.34%, and the lowest for the winter months as ?2.55 ± 4.36%, which also shows the higher variability.  相似文献   

4.
The accuracy of the Moderate Resolution Imaging Spectroradiometer's (MODIS) aerosol products is still uncertain in China, due to a lack of validation by long-term and large-scale ground-based observations. In this paper, the MODIS aerosol optical depth (AOD) product is evaluated using Chinese Sun Hazemeter Network (CSHNET) data as ground truths over different ecological regions in China during the East Asian Study of Tropospheric Aerosols—an International Regional Experiment (EAST-AIRE). The evaluation results show very large differences in the MODIS AOD retrieval between different ecosystems and geographic locations. The most agreement between the MODIS data and that of the CSHNET was in farmland sites in central-southern China, where high correlation (R>0.82) and large percentages (R2>72%) within the expected error lines issued by NASA were found. In temperate forest, coastal regions, and northeast and central farmlands, there appeared moderate agreement, with R∼0.64–0.80 and 45–73% of retrieval data falling within the expected errors. The poorest agreement existed in northern arid and semiarid regions, in remote northeast farmlands, in the Tibetan and Loess Plateau, and in southern forests, with 13–54% of retrieval data falling within the expected errors. In addition, the MODIS AOD retrievals were significantly overestimated in the northern arid and semiarid regions and underestimated in remote northeast farmlands and southern forests.  相似文献   

5.
The purpose of this paper is to study the relationship between columnar aerosol optical thickness and ground-level aerosol mass. A set of Sun photometer, elastic backscattering lidar and TEOM measurements were acquired during April 2007 in Lille, France. The PM2.5 in the mixed boundary layer is estimated using the lidar signal, aerosol optical thickness, or columnar integrated Sun photometer size distribution and compared to the ground-level station measurements. The lidar signal recorded in the lowest level (240 m) is well correlated to the PM2.5 (R2 = 0.84). We also show that the correlation between AOT-derived and measured PM2.5 is significantly improved when considering the mixed boundary layer height derived from the lidar. The use of the Sun photometer aerosol fine fraction volume does not improve the correlation.  相似文献   

6.
Multi-year records of MODIS, micro-pulse lidar (MPL), and aerosol robotic network (AERONET) Sun/sky radiometer measurements were analyzed to investigate the seasonal, monthly and geographical variations of columnar aerosol optical properties over east Asia. Similar features of monthly and seasonal variations were found among the measurements, though the observational methodology and periods are not coincident. Seasonal and monthly cycles of MODIS-derived aerosol optical depth (AOD) over east Asia showed a maximum in spring and a minimum in autumn and winter. Aerosol vertical extinction profiles measured by MPL also showed elevated aerosol loads in the middle troposphere during the spring season. Seasonal and spatial distributions were related to the dust and anthropogenic emissions in spring, but modified by precipitation in July–August and regional atmospheric dispersion in September–February. All of the AERONET Sun/sky radiometers utilized in this study showed the same seasonal and monthly variations of MODIS-derived AOD. Interestingly, we found a peak of monthly mean AOD over industrialized coastal regions of China and the Yellow Sea, the Korean Peninsula, and Japan, in June from both MODIS and AERONET Sun/sky radiometer measurements. Especially, the maximum monthly mean AOD in June is more evident at the AERONET urban sites (Beijing and Gwangju). This AOD June maximum is attributable to the relative contribution of various processes such as stagnant synoptic meteorological patterns, secondary aerosol formation, hygroscopic growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols by regional biomass burning.  相似文献   

7.
Abnormally low ozone (O3) mixing ratios were observed by electrochemical concentration cell (ECC) ozonesondes in the upper troposphere over subtropical East Asia in spring 2004, a season when high tropospheric O3 is usually observed in the region. Low O3 with a lowest mixing ratio of 13 ppbv, less than a fourth of the respective seasonal average of 60–100 ppbv, was observed at 11–18 km above ground over Hong Kong (22.31°N, 114.17°E), Sanya (18.23°N, 109.52°E) and Taipei (24.98°N, 121.43°E). The origin of the low O3 was investigated using meteorological evidence, satellite imagery and three-dimensional backward air trajectory. We found for the first time that the low O3 resulted from deep convective pumping of low O3 maritime air masses near the center of typhoon Sudal from the boundary layer of the tropical region to the east of the Philippines to the upper troposphere. The low O3 air masses were then transported to the higher latitudes far ahead of the typhoon following the long-range transport driven by the circulations associated with the typhoon and the northern Hadley cell. The findings of this study highlight that more research efforts are needed to understand the effect of the circulation associated with tropical cyclones on the distribution and budget of O3 and other trace gases in the troposphere.  相似文献   

8.
Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere–Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM2.5μm and CO.  相似文献   

9.
Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment’s impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.  相似文献   

10.
The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from −12 to −8 W m−2 was mainly distributed over the Sichuan Basin and the eastern China’s coastal regions in the all-sky case at TOA, and the forcing effect ranging from −8 to −4 W m−2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan  相似文献   

11.
Recent analysis of trends in global short-wave radiation measured with pyranometers in major cities in India support a decrease in solar radiation in many of those cities since 1990. Since direct and diffuse radiation measurements include cloud effects, spring and summer dust and the variable summer monsoon rains, we concentrate in this paper on wintertime (November–February) aerosol optical depth measurements. The aerosol optical depth is derived from cloud-free turbidity measurements beginning in the 1960s and more recent sun photometer direct aerosol optical depth measurements. We compare the sun photometer derived trends with the pyranometer-derived trends using a radiative transfer model. These results are then compared to total ozone mapping spectrometer (TOMS) satellite-derived regional aerosol optical depths from 1980 to 2000. The results show that inclusion of the earlier turbidity measurements helps to establish an increasing regional turbidity trend. However, most of the increasing trend is confined to the larger cities in the Ganges River Basin of India (mainly Calcutta and New Delhi) with other cities showing a much less increase. Regional satellite data show that there is an increasing trend in aerosol off the coast of India and over the Ganges River Basin. The increase over the Ganges River Basin is consistent with population trends over the region during 1980–2000.  相似文献   

12.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

13.
Aerosol optical properties from 2005 to 2008 at the Longfengshan regional background station in Northeast China were measured and analyzed. The annual mean of aerosol optical depth (AOD) at 440 nm for the four years was about 0.27 ± 0.25, 0.39 ± 0.37, 0.35 ± 0.34, and 0.38 ± 0.38, respectively, and the corresponding annual mean for the Angstrom exponent between 440 nm and 870 nm was about 1.43 ± 0.48, 1.23 ± 0.37, 1.53 ± 0.47, and 1.55 ± 0.42. The average monthly AOD440nm showed similar seasonal variation with a maximum in spring and a minimum in autumn. The monthly means of AOD at 440, 675, 870 and 1020 nm increase from the January to March with the maxima about 0.77 ± 0.04, 0.65 ± 0.04, 0.58 ± 0.06, 0.57 ± 0.07, respectively and decrease from September to February with the minima about 0.32 ± 0.12, 0.22 ± 0.09, 0.15 ± 0.08, and 0.13 ± 0.07 in January. The monthly mean of Angstrom exponent shows a minimum in March (0.97 ± 0.52) and a maximum in September (1.66 ± 0.29). Both the AOD and Angstrom exponent presents single peak distributions of occurrence frequencies. The Longfenshan data showed high AODs (>1.00) both clustering in the fine mode growth wing and the coarse mode. Two typical cases under dust and haze conditions showed that the AOD under dusty day decreased from 2.20 to 1.20 and the Angstrom exponent increased from 0.10 to 1.00. On the contrast, the AOD under haze day remained relatively stable about 0.90 and the Angstrom exponent was around 1.40. The 3-day backtrajectory analysis at Longfengshan illustrated that the air-masses near ground on the dust day were from Bohai Sea and passed through Liaodong Peninsula and Northeast plain in China. But the air-masses on 500 m AGL were originated from western Mongolia and crossed Gobi deserts, Otindag Sand Land and Horqin Sand Land in Northeast China. The air-masses at Longfengshan near ground 500 m and 1000 m AGL on the haze days were from North China Region and passed through Northeast Heavy Industrial Base in Northeast China.  相似文献   

14.
This paper presents an aerosol optical scheme developed in the chemistry-transport model CHIMERE dedicated to calculate optical properties of particles. Such developments are very helpful as they complement the usual validation with PM (Particulate Matter) ground-based measurements by using surface (AERONET/PHOTONS network) and satellite (MODIS) remote sensing observations. To reach this goal, Aerosol Optical Thickness (AOT), column-averaged Single Scattering Albedo (SSA) and asymmetry parameter (g) are calculated at 440 nm, 675 nm, 870 nm and 1020 nm (AERONET wavelengths) under three hypotheses on the particle mixing state (external, internally homogeneous and core-shell). Furthermore and in addition to optical calculations, an original development has been made to estimate column volume size distributions in CHIMERE, directly comparable with AERONET retrievals. Comparisons between simulations and observations are made over Western Europe for the year 2003 but also for one specific case focused on ammonium nitrate aerosols. Observed AOT display a seasonal cycle (with highest values during summer) rather well reproduced by the model but biases with observational data have been found depending on seasons. In fall, winter and early spring, modeled AOT values agree well with AERONET retrievals with small negative biases. Focus on a pollution episode of ammonium nitrate origin during March 2003 reveals that CHIMERE is able to well reproduce the fine mode volume size distribution retrieved by AERONET, leading to good agreements between modeled and observed AOT. In late spring and summer, AERONET AOT values are underpredicted by the model, which could be due to uncertainties in modeling secondary species.  相似文献   

15.
Seasonal changes in aerosol compositions over Belgium and Europe are simulated with an extended version of the EUROS model. EUROS is capable of modelling mass and chemical composition of aerosols in two size fractions (PM2.5 and PM10-2.5). The chemical composition is expressed in terms of seven components: ammonium, nitrate, sulphate, primary inorganic compounds, elementary carbon, primary organic compounds and Secondary Organic Compounds (SOA). A comparison of modelled and measured aerosol concentrations showed that modelled concentrations are generally consistent with observed concentrations. The chemical composition of the aerosol showed a strong dependence on the season. High aerosol concentrations during the summer were mainly due to high concentrations of the secondary components nitrate, ammonium, sulphate and SOA in the size fraction PM2.5. In contrast, during autumn and winter, increased PM-concentrations were mainly due to higher concentrations of primary components, especially in the size fraction PM10-2.5.  相似文献   

16.
17.
The air quality modeling system Regional Atmospheric Modeling System-Community Multi-scale Air Quality (RAMS-CMAQ) was applied to analyze temporospatial variations in wet acid deposition over East Asia in 2005, and model results obtained on a monthly basis were evaluated against extensive observations, including precipitation amounts at 704 stations and SO4(2-), NO3-, and NH4+ concentrations in the atmosphere and rainwater at 18 EANET (the Acid Deposition Monitoring Network in East Asia) stations. The comparison shows that the modeling system can reasonably reproduce seasonal precipitation patterns, especially the extensive area of dry conditions in northeast China and north China and the major precipitation zones. For ambient concentrations and wet depositions, the simulated results are in reasonable agreement (within a factor of 2) with observations in most cases, and the major observed features are mostly well reproduced. The analysis of modeled wet deposition distributions indicates that East Asia experiences noticeable variations in its wet deposition patterns throughout the year. In winter, southern China and the coastal areas of the Japan Sea report higher S04(2-) and NO3- wet depositions. In spring, elevated SO4(2-) and NO3-wet depositions are found in northeastern China, southern China, and around the Yangtze River. In summer, a remarkable rise in precipitation in northeastern China, the valleys of the Huaihe and Yangtze rivers, Korea, and Japan leads to a noticeable increase in SO4(2-) and NO3- wet depositions, whereas in autumn, higher SO4(2-) and NO3-wet depositions are found around Sichuan Province. Meanwhile, due to the high emission of SO2, high wet depositions of SO4(2-) are found throughout the entire year in the area surrounding Sichuan Province. There is a tendency toward decreasing NO3- concentrations in rainwater from China through Korea to Japan in both observed and simulated results, which is a consequence of the influence of the continental outflow from Eurasia. The same tendency is not found for SO4(2-).  相似文献   

18.
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a mutli-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March–May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each in Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 μg m?3 over industrial/urban locations to as low as 0.065 μg m?3 over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December–February) to pre-monsoon (March–May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with an afternoon low and a nighttime high; (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL). At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May. This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic. An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.  相似文献   

19.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

20.
Atmospheric transport of trace elements has been found to be an important pathway for their input to the ocean. TSP, PM10, and PM2.5 aerosol samples were collected over the Northern South China Sea in two cruises in 2003 to estimate the input of aerosol from continent to the ocean. About 23 elements and 14 soluble ions in aerosol samples were measured. The average mass concentration of TSP in Cruise I in January (78 μg m−3) was ∼twice of that in Cruise II in April (37 μg m−3). Together with the crustal component, heavy metals from pollution sources over the land (especially from the industry and automobiles in Guangzhou) were transported to and deposited into the ocean. The atmospheric MSA concentrations in PM2.5 (0.048 μg m−3 in Cruise I and 0.043 μg m−3 in Cruise II) over Northern South China Sea were comparable to those over other coastal regions. The ratio of non-sea-salt (NSS)-sulfate to MSA is 103-655 for Cruise I and 15-440 for Cruise II in PM2.5 samples, which were much higher than those over remote oceans. The estimated anthropogenic sulfate accounts for 83–98% in Cruise I and 63–95% in Cruise II of the total NSS-sulfate. Fe (II) concentration in the aerosols collected over the ocean ranged from 0.1 to 0.9 μg m−3, accounting for 16–82% of the total iron in the aerosol, which could affect the marine biogeochemical cycle greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号