首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study synthesized multiwall carbon nanotube (MWNT)–titania (TiO2) composites and examined their characteristics and photocatalytic performance for the cleaning of gas-phase benzene, toluene, ethyl benzene, and o-xylene (BTEX) under simulated indoor conditions. Optical and spectral surveys of the as-synthesized composite confirmed that the TiO2 nanoparticles were bound intimately to the MWNT networks. The photocatalytic performance was evaluated using an annular-type reactor inner-coated with MWNT–TiO2 or Degussa P25 TiO2. The composite revealed gas removal ability superior to that of stand-alone TiO2. This composite was also less affected by humidity during toluene decomposition compared to the previous result obtained from a stand-alone TiO2. Unlike another previous result obtained from the TiO2, the performance of the composite was not affected by changes in input concentration (IC) within a simulated indoor air quality range (0.1–1.0 ppm) but it decreased significantly when the IC was increased to 5 and 10 ppm. As the flow rate was decreased from 4.0 to 1.0 L min?1, the average efficiency for the target compounds increased to 95% or ~100%. The MWNT–TiO2 composite could be applied effectively to the decomposition for BTEX under certain simulated indoor conditions.

Implications: Unlike water applications, there are few reports of gas-phase applications of multiwall carbon nanotubes (MWCNT)–TiO2 composites. This study found that MWCNT–TiO2 composites showed performance in the removal of toxic gaseous aromatic superior to that of stand-alone TiO2. In addition, the pollutant degradation efficiency of the composite was less affected by humidity than for a stand-alone TiO2 unit within a simulated indoor relative humidity range. Moreover, unlike the TiO2 unit, the composite's performance was not affected by variations in the input concentrations within the simulated indoor air quality (IAQ) range. In addition, the decomposition efficiencies increased to 100% with decreasing flow rate.  相似文献   

2.
基于过渡金属离子掺杂技术,制备了在室内光辐照条件下具有良好光催化抗菌性能的可见光响应型铁掺杂TiO2光催化涂料.研究结果表明,在可见光活性光催化涂料中添加1%的纳米TiO2时,抗菌效果最好,光照24 h后对大肠杆菌、白色念珠球菌、黑曲霉的杀菌率分别达到99.9%、97.2%、82%.采用致孔剂聚乙二醇6 000对光催化...  相似文献   

3.
In the present study, TiO2-coated ultrafiltration membranes were prepared and used for oily water filtration (droplet size <?2 μm). The aim of this work was to investigate the effect of different salt contents on fouling and filtration properties of neat and TiO2-coated membranes during oil-in-water emulsion filtration. The effect of the TiO2 coating on the flux, surface free energy, and retention values was measured and compared with the neat membrane values. The cleanability of the fouled TiO2-coated membranes by UV irradiation was also investigated by measuring flux recovery and contact angles, and the chemical changes during cleaning were characterized by ATR-IR. It was found that increasing the salt content of the model wastewaters, oil-in-water emulsions, increased the zeta potential and the size of the droplets. The presence of the TiO2 coating decreases the membrane fouling during oily emulsion filtration compared to the neat membrane, due to the hydrophilicity of the coating regardless of the salt content of the emulsions. The neat and coated membrane oil retention was similar, 96?±?2%. The coated membrane can be effectively cleaned with UV irradiation without additional chemicals and a significant flux recovery can be achieved. Monitoring of the cleaning process by following the membrane surface wettability and ATR-IR measurements showed that the recovery of flux does not mean the total elimination of the oil layer from the membrane surface.  相似文献   

4.
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) has been widely used as organic arsenic additive in animal industry. In this study, the adsorption of roxarsone on TiO2 under dark conditions, the photocatalytic decomposition of roxarsone under UV/TiO2, and the possible photocatalytic pathway were investigated. At the initial concentration of 5–35 mg/L, the adsorption of roxarsone fitted well with the pseudo-second-order kinetics. The isotherms analysis showed that the Langmuir model was better than the Freundlich and Dubinin–Radushkevich models for describing the adsorption process. After 7 h of photocatalytic decomposition, a complete disappearance of roxarsone was achieved. The pH value has a significant effect on both adsorption and photocatalytic decomposition of roxarsone. The results of high-performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and gas chromatography-mass spectrometry (GC/MS) analyses proved the cleavage of the As-C bond during the photocatalytic decomposition process by TiO2 and the intermediates of the decomposition. Based on the results, a possible photocatalytic decomposition pathway was proposed.  相似文献   

5.
Cu/La共掺杂TiO2光催化氧化水中的氨氮   总被引:1,自引:0,他引:1  
采用水解-沉淀法制备了Cu/La共掺杂纳米TiO2催化剂,利用XRD、XPS和BET技术对其进行表征,并考察了在紫外灯下,共掺杂TiO2对氨氮的光催化氧化工艺条件。物相结构和比表面积测试结果表明,共掺杂催化剂具有较好的锐钛矿晶型,孔径分布为4~8 nm,Cu/La共掺杂TiO2La以La3+,Cu是以Cu2+、Cu+的形式掺杂进入TiO2的晶格。光催化实验表明:所得改性光催化剂对氨氮的去除及焦化废水的处理均具有较高的催化活性。  相似文献   

6.
The work studies the photocatalytic activity and the antifungal efficiency of the TiO2/Zn-Al coatings placed on the target commercial façade paints. The photocatalytic active nanocomposite based on TiO2 and Zn-Al-layered double hydroxides (ZnAl-LDHs) was synthesized by a wet impregnation technique with 3 % w/w TiO2. The freshly prepared suspension was applied by spray technique on the surfaces of the white façade paints. The goal of the work was to develop a method that quickly quantifies the antifungal activity of the commercial façade paints with and without biocidal components covered with a photocatalytic coating. The essence of the proposed method is the monitoring of the fungal growth (artificial ageing conditions) and the quantification of its development (UV-A 0.13 mWcm?2) on the façade paint surfaces. A special fungus nutrient (potato dextrose agar (PDA)) was inoculated with the spores of the Aspergillus niger ATCC 6275, and the test samples (façade paints with and without photocatalytic coating) were placed on the inoculated nutrient in the petri dishes. The images of the fungal growth on the samples of the facade paints, during a period of 5 days, were imported into Matlab R2012a where they were converted to binary images (BW), based on the adequate threshold. The percentage of the surface coverage was calculated by applying the specifically written program code which determines the ratio of the black and white pixels. The black pixels correspond to the surface covered with hyphae and mycelia of the fungus.  相似文献   

7.
TiO2-supported activated carbon felts (TiO2–ACFTs) were prepared by dip coating of felts composed of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) and/or a polyethylene pulp (PE-W15) in a TiO2 aqueous suspension followed by calcination at 250 °C for 1 h. The as-prepared TiO2–ACFTs with 29–35 wt.% TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. The TiO2–ACFT(PS-A20) samples with 0 and 29 wt.% TiO2 were microporous with specific surface areas (S BET) of 996 and 738 m2/g, respectively, whereas the TiO2–ACFT(PE-W15) samples with 0 and 35 wt.% TiO2 were mesoporous with S BET of 826 and 586 m2/g, respectively. Adsorption and photocatalytic activity of the as-prepared samples were evaluated by measuring adsorption in the dark and photodegradation of gaseous acetaldehyde (AcH) and methylene blue (MB) in aqueous solution under UV light. The TiO2 loading caused a considerable decrease in the S BET and MB adsorption capacity along with an increase in MB photodegradation and AcH mineralization. Lemna minor was chosen as a representative aquatic plant for ecotoxicity tests measuring detoxification of water obtained from the MB photodegradation reaction with the TiO2–ACFT samples under UV light.  相似文献   

8.
We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2–zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2–zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76 % and more than 99 % of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.  相似文献   

9.
综合光催化氧化苯的动力学过程、光辐射场模型和质量守恒定律,采用平板型反应器建立了碳纳米管/二氧化钛/壳聚糖(CNTs/TiO2/CS)催化薄膜光催化氧化气相苯的数学模型;该模型考虑了光强、相对湿度、初始浓度与气体流速对气相苯光降解的影响。结果表明,建立的数学模型与实验结果吻合较好。  相似文献   

10.
Lanthanum-modified TiO2 photocatalysts (0.2–1.5 wt% La) were investigated in the methanol decomposition in an aqueous solution. The photocatalysts were prepared by the common sol-gel method followed by calcination. The structural (X-ray diffraction, Raman, X-ray photoelectron spectroscopy), textural (N2 physisorption), and optical properties (diffuse reflectance spectroscopy, photoelectrochemical measurements) of all synthetized nanomaterials were correlated with photocatalytic activity. Both pure TiO2 and La-doped TiO2 photocatalysts proved higher yields of hydrogen in comparison to photolysis. The photocatalyst with optimal amount of lanthanum (0.2 wt% La) showed almost two times higher amount of hydrogen produced at the same time as in the presence of pure TiO2. The photocatalytic activity increased with both increasing photocurrent response and decreasing amount of lattice and surface O species. It has been shown that both direct and indirect mechanisms of methanol photocatalytic oxidation participate in the production of hydrogen. Both direct and indirect mechanisms take part in the formation of hydrogen.  相似文献   

11.
Nanosilver-modified TiO2 and ZnO photocatalysts were studied against methicillin-resistant Staphylococcus aureus on the surface and against naturally occurring airborne microorganisms. The photocatalysts/polymer nanohybrid films were prepared by spray coating technique on the surface of glass plates and on the inner surface of the reactive light source. The photoreactive surfaces were activated with visible light emitting LED light at λ?=?405 nm. The optical properties of the prepared photocatalyst/polymer nanohybrid films were characterized by diffuse reflectance measurements. The photocatalytic properties were verified with the degradation of ethanol by gas chromatography measurements. The destruction of the bacterial cell wall component was examined with transmission electron microscope. The antibacterial effect of the photocatalyst/polymer nanohybrid films was tested with different methods and with the associated standard ISO 27447:2009. With the photoreactive coatings, an extensive disinfectant film was developed and successfully prepared. The cell wall component of S. aureus was degraded after 1 h of illumination. The antibacterial effect of the nanohybrid films has been proven by measuring the decrease of the number of methicillin-resistant S. aureus on the surface and in the air as the function of illumination time. The photocatalyst/polymer nanohybrid films could inactivate 99.9 % of the investigated bacteria on different thin films after 2 h of illumination with visible light source. The reactive light source with the inner-coated photocatalyst could kill 96 % of naturally occurring airborne microorganisms after 48 h of visible light illumination in indoor air sample. The TEM results and the microbiological measurements were completed with toxicity tests carried out with Vibrio fischeri bioluminescence bacterium.  相似文献   

12.
CdS-TiO_2/MWCNTs结构表征及其光催化性能   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法,制备了多壁碳纳米管(MWCNTs)负载的双组分复合半导体光催化剂CdS-TiO2/MWCNTs。通过透射电镜(TEM)、比表面分析(BET)、X射线衍射(XRD)和紫外-可见吸收光谱(UV-vis)等分析方法对光催化剂进行了结构表征,并考察了CdS-TiO2/MWCNTs对甲苯降解的光催化性能。结果表明:纳米活性粒子CdS-TiO2均匀负载于MWCNTs上,比表面积、光吸收阈值和强度增大,活性粒子间以及活性粒子与载体之间具有协同作用,有利于光催化性能的提高,CdS-TiO2/MWCNTs在主波长为254 nm紫外光照射下对甲苯的降解效果较好,去除率可达55.3%。  相似文献   

13.
This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol–gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95 % removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.  相似文献   

14.
活性炭纤维负载TiO2光催化降解甲醛的影响因素   总被引:1,自引:0,他引:1  
利用自制光催化气体反应器体系,以活性炭纤维负载TiO2作催化剂,在紫外光照射下模拟降解室内污染气体甲醛,测试了活性炭纤维负载TiO2催化剂的催化活性,探讨了紫外光光强、催化剂的酸度、反应器内湿度及反应时间等控制反应的主要因素对甲醛降解率的影响。结果表明,活性炭纤维与TiO2的协同作用大大提高了对甲醛的降解效果;紫外光强增倍对甲醛降解率有一定提高,但提高幅度仅为11.71%;活性炭纤维用pH=5的TiO2溶胶浸泡做催化剂对甲醛的降解效果最好,60 min内降解率达到68.37%;反应器内的湿度为81%甲醛降解率最高,反应60 min后达82.2%;随着反应时间的延长,甲醛降解率的上升幅度不断减小,最高只能达到94.59%。  相似文献   

15.
BiVO4/TiO2 composites with different weight ratios have been prepared by coprecipitation-based reactions followed by either thermal or hydrothermal treatment with the aim of evaluating the TiO2 photosensitization by BiVO4. The obtained materials present in all cases the desired monoclinic phase of BiVO4 and anatase phase of TiO2. Visible light absorption increased with increasing amount of bismuth vanadate. XPS results reveal the surface enrichment of Ti with respect to the bulk composition in samples characterised by a higher content of BiVO4. The photocatalytic activity of the prepared materials was tested for the degradation of isopropanol in the gas phase under indoor illumination conditions. Although none of the composites was able to improve the activity of TiO2, the low BiVO4 containing samples appear as more suitable for further synthesis tuning.  相似文献   

16.
光催化降解模拟室内挥发性有机污染物研究   总被引:4,自引:1,他引:3  
用浸渍-提拉法制备玻璃弹簧负载型TiO2薄膜催化剂,在自制的反应器中进行光催化降解由丙酮、甲苯、对二甲苯组成的模拟室内挥发性有机污染物VOCs研究.研究发现:催化剂中掺杂金属离子能影响催化剂的降解效果,降解效果依次为掺铈TiO2>纯TiO2>掺银TiO2;气体流量显著影响降解效果,丙酮、甲苯和对二甲苯的最佳降解流量分别为3、5、7 L/min;混合气体中非对称性的极性分子的降解效率高于对称性分子,导致丙酮、对二甲苯组分降解率降低,甲苯降解率增高.  相似文献   

17.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

18.
铂铈共掺杂纳米TiO2的制备、表征及光催化性能   总被引:1,自引:1,他引:0  
杜鹏  赵振波  陈刚 《环境工程学报》2013,7(10):3933-3938
以钛酸四丁酯为前驱体,过氧化氢为氧化剂,采用简单易行的低温氧化法制备出晶粒尺寸较小(平均尺寸25 nm)的二氧化钛纳米粒子。通过贵金属Pt掺杂TiO2(Pt-TiO2)、稀土元素Ce掺杂TiO2(Ce-TiO2)和Pt、Ce共掺杂TiO2(Pt/Ce-TiO2)的掺杂的方法对二氧化钛进行改性。通过XRD,XPS,TEM,紫外漫反射等表征手段对制备的样品进行表征。通过可见光下降解罗丹明B来测试其光催化活性。实验结果表明,由Ce掺杂的TiO2光催化剂对有机污染物的最大降解能力略大于Pt掺杂的TiO2,2种元素进行共同掺杂时对应的TiO2光催化剂降解能力最大。  相似文献   

19.
Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.  相似文献   

20.
This study has been undertaken to investigate the relationship between Pd oxidation states on TiO2 photocatalysts and their photocatalytic oxidation behaviors of NO. Three types of Pd-modified TiO2 with different Pd oxidation states were prepared by wet impregnation method, neutralization method and photodeposition method, respectively. And these Pd-modified photocatalysts were characterized by X-ray diffraction analysis, X-ray photoelectron spectrum analysis (XPS), UV–Vis diffuse reflectance spectra and temperature programmed desorption (TPD). It was found from XPS results that the dominant oxidation states of Pd on these Pd-modified TiO2 catalysts were Pd2+, PdO, and Pd0, respectively. NO-TPD results showed that the NO adsorption capacity was improved greatly by the modification of Pd2+ ions. The activity tests showed that Pd-modified TiO2 by a wet impregnation method increased photocatalytic activity compared to pure TiO2 (Degussa P25). It was concluded that Pd2+ ions on as-prepared TiO2 catalysts provided key contributions to the improvement of photocatalytic activity. However, Pd0 and PdO deposits on TiO2 almost had no positive effect on NO oxidation. The mechanism of photocatalytic oxidation of NO in gas phase over Pd-modified TiO2 was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号