首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   

2.
Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21–23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m3) as compared to that during the non-smoke haze period (27.0 μg/m3). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.  相似文献   

3.
To better understand the influence of sources and atmospheric processing on aerosol chemical composition, we collected atmospheric particles in Sapporo, northern Japan during spring and early summer 2005 under the air mass transport conditions from Siberia, China and surrounding seas. The aerosols were analyzed for inorganic ions, organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and the major water-soluble organic compound classes (i.e., dicarboxylic acids and sugars). SO42? is the most abundant inorganic constituent (average 44% of the identified inorganic ion mass) followed by NH4+ (21%) and NO3? (13%). Concentrations of OC, EC, and WSOC ranged from 2.0–16, 0.24–2.9, and 0.80–7.9 μg m?3 with a mean of 7.4, 1.0, and 3.1 μg m?3, respectively. High OC/EC ratios (range: 3.6–19, mean: 8.7) were obtained, however WSOC/OC ratios (0.23–0.69, 0.44) do not show any significant diurnal changes. These results suggest that the Sapporo aerosols were already aged, but were not seriously affected by local photochemical processes. Identified water-soluble organic compounds (diacids + sugars) account for <10% of WSOC. Based on some marker species and air mass back trajectory analyses, and using stable carbon isotopic compositions of shorter-chain diacids (i.e., C2–C4) as photochemical aging factor of organic aerosols, the present study suggests that a fraction of WSOC in OC is most likely influenced by aerosol aging, although the OC loading in aerosols may be more influenced by their sources and source regions.  相似文献   

4.
Alves C  Pio C  Carvalho A  Santos C 《Chemosphere》2006,63(1):153-164
A labour-intensive analytical technique was applied to atmospheric particulate matter samples collected in a German urban/industrial influenced grassland location (Melpitz) and in a Finnish forest area (Hyyti?l?) in order to achieve a detailed chemical speciation of the organic content. The representative nature of the solvent and water-extractable fractions was determined. The organic compounds identified in the solvent extracts are represented by primary compounds with both anthropogenic and biogenic origin, which mainly derive from the vegetation waxes and from petrogenic sources. Secondary products resulting from the oxidation of volatile organic compounds were also detected. The German meadow presented the highest levels of sugars and acidic compounds in the water extracts, whilst polyols were the most abundant class in the Finnish forest. The major compounds of these classes were malic acid, mannitol, arabitol, glucose and sucrose. Levoglucosan was also found in the water extract.  相似文献   

5.
Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m3, EC = 2.5 ± 1.9 μg/m3) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m3, EC = 0.8 ± 0.4 μg/m3) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m3, EC = 0.5 ± 0.4 μg/m3) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region.  相似文献   

6.
Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO(2) dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty.  相似文献   

7.
 This study is aimed to characterize the major chemical compositions of PM2.5 from incense burning in a large environmental chamber. Chemical analyses, including X-ray fluorescence for elemental species, ion chromatography for water soluble inorganic species (chloride, nitrate, sulfate, sodium, potassium, ammonium) and thermal/optical reflectance analysis for carbon species were carried out for combustion of three incense categories (traditional, aromatic and church incense). The average concentrations from incense burning ranged from 139.8 to 4414.7 μg m−3 for organic carbon (OC), and from 22.8 to 74.0 μg m−3 for elemental carbon (EC), respectively. The average OC and EC concentrations in PM2.5 of three incense categories were in the order of church incense>traditional incense>aromatic incense. OC/EC ratios ranged from 7.0 to 39.1 for the traditional incense, with an average of 21.7; from 3.2 to 11.9 for the aromatic incense, with an average of 7.7. The concentrations of Cl, SO42−, Na+ and K+ were highly variable. On average, the inorganic ion concentration sequence was traditional incense>church incense>aromatic incense. The profiles for elements were dominated by Na, Cl and K. In general, the major components in PM2.5 fraction from incense burning are OC (especially OC2, OC3 and OC4), EC and K.  相似文献   

8.
The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from off-line calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99%. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 and 4 μm. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest single scattering albedo. A similar treatment was done for aerosols from biomass burning. In this case, two size distributions were considered. One was based on a distribution measured for Northern Hemisphere temperate forest fires while the second was based on a measured size distribution for tropical fires. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and band averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity and black carbon fraction. These optical properties result in global average forcing from anthropogenic sulfate aerosols of −0.81 Wm-2. The global average forcing for biomass aerosols ranged from −0.23 to −0.25 Wm-2 depending on the assumed size distribution, while fossil fuel organic and black carbon are estimated to heat the atmosphere by about 0.16 Wm-2.  相似文献   

9.
PM1 aerosol characterization on organic tracers for biomass burning (levoglucosan and its isomers and dehydroabietic acid) was conducted within the AERTRANS project. PM1 filters (N?=?90) were sampled from 2010 to 2012 in busy streets in the urban centre of Madrid and Barcelona (Spain) at ground-level and at roof sites. In both urban areas, biomass burning was not expected to be an important local emission source, but regional emissions from wildfires, residential heating or biomass removal may influence the air quality in the cities. Although both areas are under influence of high solar radiation, Madrid is situated in the centre of the Iberian Peninsula, while Barcelona is located at the Mediterranean Coast and under influence of marine atmospheres. Two extraction methods were applied, i.e. Soxhlet and ASE, which showed equivalent results after GC-MS analyses. The ambient air concentrations of the organic tracers for biomass burning increased by an order of magnitude at both sites during winter compared to summer. An exception was observed during a PM event in summer 2012, when the atmosphere in Barcelona was directly affected by regional wildfire smoke and levels were four times higher as those observed in winter. Overall, there was little variation between the street and roof sites in both cities, suggesting that regional biomass burning sources influence the urban areas after atmospheric transport. Despite the different atmospheric characteristics in terms of air relative humidity, Madrid and Barcelona exhibit very similar composition and concentrations of biomass burning organic tracers. Nevertheless, levoglucosan and its isomers seem to be more suitable for source apportionment purposes than dehydroabietic acid. In both urban areas, biomass burning contributions to PM were generally low (2 %) in summer, except on the day when wildfire smoke arrive to the urban area. In the colder periods the contribution increase to around 30 %, indicating that regional biomass burning has a substantial influence on the urban air quality.  相似文献   

10.
11.
During April 2008, as part of the International Polar Year (IPY), a number of ground-based and aircraft campaigns were carried out in the North American Arctic region (e.g., ARCTAS, ARCPAC). The widespread presence during this period of biomass burning effluent, both gaseous and particulate, has been reported. Unusually high ozone readings for this time of year were recorded at surface ozone monitoring sites from northern Alaska to northern California. At Barrow, Alaska, the northernmost point in the United States, the highest April ozone readings recorded at the surface (hourly average values >55 ppbv) in 37 years of observation were measured on April 19, 2008. At Denali National Park in central Alaska, an hourly average of 79 ppbv was recorded during an 8-h period in which the average was over 75 ppbv, exceeding the ozone ambient air quality standard threshold value in the U.S. Elevated ozone (>60 ppbv) persisted almost continuously from April 19–23 at the monitoring site during this event. At a coastal site in northern California (Trinidad Head), hourly ozone readings were >50 ppbv almost continuously for a 35-h period from April 18–20. At several sites in northern California, located to the east of Trinidad Head, numerous occurrences of ozone readings exceeding 60 ppbv were recorded during April 2008. Ozone profiles from an extensive series of balloon soundings showed lower tropospheric features at ~1–6 km with enhanced ozone during the times of elevated ozone amounts at surface sites in western Canada and the U.S. Based on extensive trajectory calculations, biomass burning in regions of southern Russia was identified as the likely source of the observed ozone enhancements. Ancillary measurements of atmospheric constituents and optical properties (aerosol optical thickness) supported the presence of a burning plume at several locations. At two coastal sites (Trinidad Head and Vancouver Island), profiles of a large suite of gases were measured from airborne flask samples taken during probable encounters with burning plumes. These profiles aided in characterizing the vertical thickness of the plumes, as well as confirming that the plumes reaching the west coast of North America were associated with biomass burning events.  相似文献   

12.
Two-stage aerosol samples (PM10–2.5 and PM2.5) were collected at a coastal rural site located in the northeastern Mediterranean, between April 2001 and 2002. A total of 562 aerosol samples were analyzed for trace elements (Fe, Ti, Mn, Ca, V, Ni, Zn, Cr) and water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl, Br, NO3, SO42−, C2O42− and MS:methane sulfonate). PM10, crustal elements, sea salt aerosols and NO3 were mainly associated with the coarse mode whereas non-sea salt (nss)SO42−, C2O42−; MS, NH4+, Cr and Ni were found predominantly in the fine fraction. Concentrations of aerosol species exhibited orders of magnitude change from day to day and the aerosol chemical composition is heavily affected by dust events under the influence of airflow from North Africa. During the sampling period, 11 specific mineral dust events of duration varying from 1 day to a week have been identified and their influence on the chemical composition of aerosols has been studied in detail. Ionic balance analysis performed in the coarse and fine aerosol fractions indicated anion and cation deficiency due to CO32− and H+, respectively. A relationship between nssSO42− and NH4+ denoted that sulfate particles were partially neutralized (70%) by ammonium. Excess-K/BC presented two distinct ratios for winter and summer, indicating two different sources: fossil fuel burning in winter and biomass burning in summer.  相似文献   

13.
One-year quantitative chemical data set consisting of water-soluble constituents (NH4+, Na+, K+, Mg2+, Ca2+, Cl?, NO3?, SO42? and HCO3?), crustal and trace elements (Al, Fe, Ca, Mg, K, Mn, Zn, Pb) and carbonaceous species (OC, EC) in ambient aerosols, collected over an urban site located in a high-dust semi-arid region of western India, reveals excellent linear relationship (r2 = 0.92; slope = 0.96 ± 0.05) between gravimetrically assessed TSP (total suspended particulates) and chemically analyzed aerosol mass. The TSP abundance ranging from 60 to 250 μg m?3, over a period of 12 months (January–December), is dominated by mineral dust (~70%); whereas contribution from sea-salts, anthropogenic and carbonaceous species exhibits significant temporal variability depending upon the wind regimes. The mineral dust is enriched in Ca, Mg and Fe with respect to upper continental crust (UCC); whereas Zn and Pb exhibit a characteristic anthropogenic source and high enrichment factors. The carbonaceous species show significant seasonality; with dominance of OC (range: 4.6–28 μg m?3; average: 12.8 μg m?3; SD: 6.8) and minor contribution from EC (range: 0.3–4.4 μg m?3; average: 2.4 μg m?3; SD: 1.4). The observed concentrations are significantly lower than those reported for the metro cities in South Asia but the OC/EC ratios (range: 4.3–35; average: 8.3; SD: 5.7) are significantly higher than the characteristic ratio (~2–4) reported for the urban atmosphere. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric chemistry and climate change. This study could also be useful in understanding the physical and optical aerosol properties documented from the same site and thus, in validating regional climate models.  相似文献   

14.
Environmental Science and Pollution Research - Simultaneous observations (2014–2017) of organic carbon (OC) and elemental carbon (EC) are made over a high-altitude site (Nainital,...  相似文献   

15.
An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.  相似文献   

16.
Environmental Science and Pollution Research - In order to investigate the spatial and temporal variations of aerosols and its soluble chemical compositions of the data gap zone in the central...  相似文献   

17.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   

18.
Aerosol (total suspended particulate) samples collected at three diverse locations (urban-commercial, semi-urban and rural-agricultural) in Patiala, India were analyzed for loss on ignition (LOI) and organic tarry matter (OTM) content in ambient air during crop residue burning (CRB) episodes and non-crop residue burning (NCRB) months in 2006–2007. Results showed high levels of LOI and OTM during wheat and rice crop residue-burning periods at all the sites. Higher levels were obtained during rice crop residue-burning period as compared to the wheat residue-burning period. At semi-urban site, LOI varied between 53 ± 36 μg m?3 and 257 ± 14 μg m?3 constituting 38–78% (w/w) part of the aerosols whereas levels of OTM varied between 0.98 ± 0.11 μg m?3 and 7.93 ± 2.76 μg m?3 comprising 0.42–3.28% (w/w) fraction. At rural-agricultural area site, levels of LOI varied between 86 ± 40 μg m?3 and 293 ± 70 μg m?3 comprising 27–84% (w/w), whereas OTM levels varied between 1.31 ± 0.64 μg m?3 and 10.09 ± 6.56 μg m?3 constituting 0.83–2.42% (w/w) fraction of the aerosols. At urban-cum-commercial site, levels of LOI and OTM varied between 48 ± 23 μg m?3 and 281 ± 152 μg m?3 and 2.53 ± 1.23 μg m?3 and 17.40 ± 8.50 μg m?3, constituting 24–62% (w/w) part of the aerosols, respectively. Results also indicated that OTM and LOI were integral parts of aerosols and their concentrations were influenced by the crop residue burning practices with incorporated effect of vehicular activities in Patiala.  相似文献   

19.
Although particulate emissions from residential wood burning have become a subject of great scientific concern for a few years, data related to their impact on the air quality of large European urban centres are still missing. In the present study, we investigated the chemical and optical properties of fine (PM2.5) carbonaceous aerosols in Paris during the 2005 winter season in order to track the presence of wood burning emissions in such a large city. The use of a seven wavelength Aethalometer allowed us to document shortwave light absorption by brown-carbon-containing organic aerosols of biomass burning origin. In particular, a well-marked diurnal pattern of the spectral dependence of light absorption, with maxima during the night, could be observed every day of the campaign and attributed to wood burning emissions. Relatively high absorption Ångstrom exponents and WSOC/OC ratios (respectively 1.25 and 0.35 on average for the period of study) also indicated the importance of biomass burning aerosols in the Paris atmosphere in winter. Finally, a rough estimate of the contribution of wood burning carbonaceous aerosols to PM2.5 could be achieved. This contribution was found to be as high as 20 ± 10% on average at the Paris background site investigated here.  相似文献   

20.
Atmospheric aerosols were collected in separate coarse (2–10 μm diameter) and fine (diameter less than 2 μm) size fractions at Rukomechi Research Station (16.1°S, 29.4°E), Zimbabwe, in the central part of southern Africa, from September 1994 to January 2000. The samples were analysed for the particulate mass (PM), black carbon, and 47 elements. The overall data set and the separate wet and dry season data sets were examined with absolute principal component analysis (APCA). Natural and anthropogenic aerosol sources were identified in both seasons, but the sources and their contributions to the total PM were found to vary between seasons and between size fractions. Crustal matter, sea salt (SS), a mixed biogenic (BIO) emission/biomass burning (BB) component, and a copper component were identified for the coarse aerosols during the wet season. APCA attributed 29% of the total wet season coarse PM to the mixed BIO/BB component, and 32% to SS. The copper component is likely due to the copper smelters in the Zambian Copperbelt. The dry season coarse PM originated from crustal matter, BB, BIO, and SS sources, with the major contribution (32%) coming from BB. Four components (crustal matter, BB, non-ferrous smelters, and SS) were identified for the fine particles for both the wet and dry seasons. The BB component provided the major contribution to the total fine PM, accounting for 44% and 79% in the wet and dry seasons, respectively. The relative contributions to the total PM (both fine and coarse) for all sources were greater in the dry season than the wet season, except for SS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号