首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors.  相似文献   

2.
We have used a three-dimensional off-line chemical transport model (CTM) to assess the impact of lightning emissions in the free troposphere both on NOx itself and on other chemical species such as O3 and OH. We have investigated these effects using two lightning emission scenarios. In the first, lightning emissions are coupled in space and time to the convective cloud top height calculated every 6 h by the CTM's moist convection scheme. In the second, lightning emissions are calculated as a constant, monthly mean field. The model's performance against observed profiles of NOx and O3 in the Atlantic and Pacific ocean improves significantly when lightning emissions are included. With the inclusion of these emissions, the CTM produces a significant increase in the NOx concentrations in the upper troposphere, where the NOx lifetime is long, and a smaller increase in the lower free troposphere, where the surface NOx sources dominate. These changes cause a significant increase in the O3 production in the upper troposphere and hence higher calculated O3 there. The model indicates that lightning emissions cause local increases of over 50 parts per 1012 by volume (pptv) in NOx, 200 pptv in HNO3 and 20 parts per 109 by volume (ppbv) (>40%) in O3. In addition, a smaller increase of O3 in the lower troposphere occurs due to an increase in the downward transport of O3. The O3 change is accompanied by an increase in OH which is more pronounced in the upper troposphere with a corresponding reduction in CO. The method of emission employed in the model does not appear to have a significant effect globally. In the upper troposphere (above about 300 hPa) NOx concentrations are generally lower with monthly mean emissions, because of the de-coupling of emissions from the model's convection scheme, which vents NOx aloft more efficiently in the coupled scheme. Below the local convective outflow altitude, NOx concentrations are larger when using the monthly mean emissions than when coupled to the convection scheme, because the more dilute emissions, and nighttime emissions, lead to a slower NOx destruction rate. Only minor changes are predicted in the monthly average fields of O3 if we emit lightning as a monthly constant field. However, the method of emission becomes important when we make a direct comparison of model results with time varying data. These differences should be taken into account when a direct comparison of O3 with measurements collected at particular times and locations is attempted.  相似文献   

3.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

4.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

5.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

6.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

7.
It is increasingly accepted that although exposure to elevated concentrations of PM10 is associated with an increased risk of mortality and morbidity, the relationship may not be causal. Rather, there is evidence that number concentrations may be a more appropriate metric than mass concentrations in evaluating health risk. Number concentrations are not routinely monitored and spatial and temporal patterns are poorly quantified. CO and NOx are co-pollutants with their major urban source in common with fine particles, i.e. road vehicle emissions; are routinely monitored in many cities and are also related to ill health. Datasets of particle number concentration measurements from approximately month-long field campaigns in Manchester, Edinburgh and Birmingham (UK) are compared with simultaneous concentrations of CO and NOx from nearby fixed monitors. It was found that it might be possible to reliably predict particle number concentrations (diameters>100 nm) on an hourly basis in Manchester city centre from knowledge of NOx or CO concentrations alone. The influences of meteorology, spatial variability in emissions and lack of co-location upon the correlations are investigated using cluster analysis. The cluster analysis revealed that these relationships may vary between cities and are dependent upon monitor location but in ways that can be ascribed. For two out of three sites there existed a linear relationship between average cluster aerosol and gas concentrations. This indicates that although airmass aging disrupts the short-term linear relationship, the relationship in the average survives. An emission ratio of particles (approx. 100–500 nm diameter) to NOx of approximately 50 cm−3 ppb−1 was estimated in Manchester and Birmingham. Particle mass spectrometry measurements indicated that organic compounds dominated these particles and an emission rate of 0.58 ton km−2 a−1 of organic particulate matter from road transport has been estimated for the Greater Manchester conurbation.  相似文献   

8.
NOx emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NOx measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1–6.9% of the calibration domain (0–1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NOx±38 t and the average NOx emission corrected for ambient conditions 14.3 g kWhcorr−1. The exhaust profile of the engine in terms of NOx, CO and CO2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NOx emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NOx measurements on board ships.  相似文献   

9.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

10.
The influence of traffic-induced pollutants (e.g. CO, NO, NO2 and O3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO2 maxima only occurred in the morning. A high NO2/NO ratio was established during weather conditions with high global radiation intensities (K>800 W m−2), which may result in a high O3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km2), which were as high as 275 μg m−3 O3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m−3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine–Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The highest concentrations (CO=4.3 mg m−3, NO=368 μg m−3, 30-min mean values) coincide with the increase in the evening inversion. The maximum measured values for CO, NO and NO2 do not, however, exceed the German air quality standards in winter and summer.  相似文献   

11.
Urban Airshed Model-Version IV (UAM-IV) simulations on 7–8 July, 1988 for the Atlanta, Georgia, nonattainment area are used to investigate how recent changes in the National Ambient Air Quality Standard (NAAQS) and changes in boundary concentrations may affect attempts to comply with the standard through local emissions reductions. According to model results, the recently promulgated 8 h NAAQS at a level of 0.08 ppmv will require larger emission reductions to comply with the standard than those that are necessary to comply with the previous 1 h/0.12 ppmv NAAQS. Regardless of the form of the NAAQS or the magnitude of the concentrations of O3 and its precursors at the model domain boundary, UAM-IV simulations for Atlanta predict that NOx (NO+NO2) emission reductions are more effective than volatile organic compound reductions in mitigating O3 pollution. Moreover, the simulations indicate that NOx emission reductions greater than 60–75% would be required to demonstrate attainment under either form of the standard, even if boundary concentrations of O3 and its precursors were substantially reduced. Further research is necessary to determine if this weak response to emission controls is truly representative of the real atmosphere, or is a result of the meteorological conditions specific to this episode, or is an artifact of the UAM-IV model or its inputs.  相似文献   

12.
The influence of NOx (NO+NO2) concentrations on the product distribution of the OH-initiated oxidation of DMS has been studied at room temperature using total NOx concentrations varying from 0 to ∼1800 ppbv (30–600 ppbv NO2 and 140–1760 ppbv NO). Clear trends in the formation yields of the products SO2, COS, MSA, MTF (methyl thiolformate), MSPN (methanesulphonyl peroxynitrate), DMSO and DMSO2 have been observed with variation in NOx. The presence of low levels of NO reduces the yields of both MTF and COS to zero. The formation yields of MSA and DMSO2 increase with increasing NOx concentration, whereas the yields of DMSO and SO2 decrease. The following approximate changes in the yield, not corrected for possible loss processes, have been measured for variation of NOx between 0 and ∼1800 ppbv: DMSO decreases from 20 to 3%S; DMSO2 increases from 3 to 15%S, SO2 decreases from 70 to 30%S and MSA increases from 4 to 17%S. Under the experiments conditions NOx levels of several tens of ppbv are required before a perceptible change is observed in the MSA yield. If applicable to the atmosphere such a situation is only likely to be observed near coastal areas affected by pollution. MSPN (CH3SO2O2NO2) is observed as an oxidation product in the presence of NO2 even at low levels (e.g. 60 ppbv). Its possible role as a NOx reservoir in the troposphere is considered.  相似文献   

13.
A detrending technique is developed for short-term and yearly variations in order to identify long-term trends in primary and secondary pollutants. In this approach, seasonal and weekly variations are removed by using a mean year; the residual meteorological short-term variation is removed by using a multiple linear regression model. This methodology is employed to detrend ozone (O3), NOx, VOC and CO concentrations in Switzerland. We show that primary pollutants (NOx,VOC and CO) at urban and sub-urban stations show a downward trend over the last decade which correlates well with the reductions in the estimated Swiss emissions. In spite of these large decreases achieved in precursor emissions, summer peak ozone concentrations do not show any statistically significant trend over the last decade. Application of this method to ozone concentrations measured at the Jungfraujoch (3580 m a.s.l.) also shows no trend over the last 10 years. Detrended summer ozone correlates well with European Union gross national product and industrial production growth rates. These results suggest that if substantial reductions in summer peak ozone in Switzerland are desired, emissions reduction strategies must be part of control program involving a much larger region.  相似文献   

14.
The impact of the auxiliaries and particularly air conditioning on emissions (CO2, CO, HC, NOx and particles) is investigated. To this aim, various data from European laboratories are used and analysed. Parameters linked to technology and to climatic conditions are investigated. The main distinction is made between gasoline and diesel vehicles. A physical model is proposed to extrapolate the excess emissions at low temperature (below 28 °C) and with solar radiation, together with a statistical model.  相似文献   

15.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

16.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

17.
Annual mean limits for NO2 concentrations have been set in the European Union, which will be most challenging to meet in large urban conurbations. In this paper, we discuss techniques that have been developed to predict current and future NO2 concentrations in London, utilising ambient data. Hourly average NOx (NO+NO2) and NO2 concentrations are used to calculate NOx frequency distributions. By defining relationships between the annual mean NOx and NO2 at different sites, it is possible to investigate different NOx reduction strategies. The application of the frequency distribution approach to monitoring sites in London shows that given the likely change in emissions by 2005, it is unlikely that much of central and inner London will meet the objective. The approaches used suggest that meeting the objective in central London will be the most challenging for policy makers requiring NOx concentrations as low as 30 ppb, compared with values closer to 36–40 ppb for outer London. Predictions for 2005 indicate that concentrations of NO2 up to 6 ppb in excess of the objective are likely in central London.  相似文献   

18.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

19.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

20.
The sensitivity of the CHIMERE model to emission reduction scenarios on particulate matter PM2.5 and ozone (O3) in Northern Italy is studied. The emissions of NOx, PM2.5 SO2, VOC or NH3 were reduced by 50% for different source sectors for the Lombardy region, together with 5 additional scenarios to estimate the effect of local measures on improving the air quality for the Po valley area. Firstly, we evaluate the model performance by comparing calculated surface aerosol concentrations for the standard case (no emission reductions) with observations for January and June 2005. Calculated monthly mean PM10 concentrations are in general underestimated. For June, modelled PM10 concentrations slightly overestimate the measurements. Calculated monthly mean SO4, NO3?, NH4+ concentrations are in good agreement with the observations for January and June. Secondly, the model sensitivity of emission reduction scenarios on PM2.5 and O3 calculated concentrations for the Po valley area is evaluated. The most effective scenarios to abate PM2.5 concentration are based on the SNAP2 (non-industrial combustion plants) and SNAP7 (road traffic) sectors, for which the NOx and PM2.5 emissions are reduced by 50%. The number of days that the 2015 PM2.5 limit value of 25 μg m?3 in Milan is exceeded by reducing primary PM2.5 and NOx emissions for SNAP2 and 7 by 50%, does not change in January when compared to the standard case for the Milan area. It appears that 40% of the PM2.5 concentration in the greater Milan area is caused by the emissions surrounding the Lombardy region and from the model boundary conditions.This study also showed that a more effective pollutant reduction (emissions) per ton of pollutant reduced (concentrations) for the greater Milan area is obtained by reducing the primary PM2.5 emissions for SNAP7 by 50%. The most effective scenario on PM2.5 decrease for which precursor emissions are reduced is achieved by reducing SO2 emissions by 50% for SNAP7.Our study showed that during summer time, the largest reductions in O3 concentrations are achieved for SNAP7 emission reductions, when volatile organic compounds (VOCs) are reduced by 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号