首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
This paper develops a new method of statistical analysis of interaction and transformation between different modes in the particle size distribution in atmospheric aerosols in the presence of strong stochastic fluctuations of the environmental and meteorological parameters. Fast processes of mode transformation are investigated in combustion aerosols near a busy road on the basis of the fragmentation mechanism of particle evolution. A unique anti-symmetric correlation pattern between different modes is described and explained by means of the formulated fragmentation theorem. This provides yet another confirmation of the fragmentation mechanisms of aerosol evolution.  相似文献   

2.
Very high concentration of suspended particulate matter (SPM) is observed at traffic junctions in India. Factor analysis-multiple regression (FA-MR), a receptor modelling technique has been used for quantitative apportionment of the sources contributing to the SPM at two traffic junctions (Sakinaka and Gandhinagar) in Mumbai, India. Varimax rotated factor analysis identified (qualitative) five possible sources; road dust, vehicular emissions, marine aerosols, metal industries and coal combustion. A quantitative estimation by FA-MR model indicated that road dust contributed to 41%, vehicular emissions to 15%, marine aerosols to 15%, metal industries to 6% and coal combustion to 6% of the SPM observed at Sakinaka traffic junction. The corresponding figures for Gandhinagar traffic junction are 33%, 18%, 15%, 8% and 11%, respectively. Due to limitation in source marker elements analysed about 16% of the remaining SPM at these two traffic junctions could not be apportioned to any possible sources by this technique. Of the observed lead in the SPM, FA-MR apportioned 62% to vehicular emissions, 17% to road dust, 11% to metal industries, 7% to coal combustion and 3% to marine aerosols at Gandhinagar traffic junction and about a similar apportionment for lead in SPM at Sakinaka traffic junction.  相似文献   

3.
Extensive measurements on particle number concentration and size distribution (13–800 nm), together with detailed chemical composition of PM2.5 have constituted the main inputs of the database used for a source apportionment analysis. Data were collected at an urban background site in Barcelona, Western Mediterranean.The source identification analysis helped us to distinguish five emission sources (vehicle exhausts, mineral dust, sea spray, industrial source and fuel-oil combustion) and two atmospheric processes (photochemical induced nucleation and regional/urban background particles derived from coagulation and condensation processes). After that, a multilinear regression analysis was applied in order to quantify the contribution of each factor.This study reveals that vehicle exhausts contribute dominantly to the number concentration in all the particle sizes (52–86%), but especially in the range 30–200 nm. This work also points out the importance of the regional and/or urban formed aerosols (secondary inorganic particles) on the total number concentration (around 25% of the total number), with a higher impact on the accumulation mode. The photo-chemically induced nucleation of aerosols only represents a small proportion of the total number as an annual mean (3%), but is very relevant when considering only the nucleation mode (13–20 nm) fraction (23%). The other sources recognized registered sporadic contributions to the total number, coinciding with specific meteorological scenarios.This study discloses the main sources and features affecting and controlling the fine and ultra-fine aerosols in a typical city in the Western Mediterranean coast. Whereas the road traffic appears to be the most important source of sub-micrometric aerosols, other sources may not be negligible under specific meteorological conditions.  相似文献   

4.
The European emissions of BC and OC in fine particles are calculated for the years 1990, 1995 and 2000 applying the RAINS model that, beyond fuel-sector distinction, explicitly includes various combustion technologies and the penetration of abatement options. The emission factors used are developed considering specific European conditions. The main sources of carbonaceous aerosols in Europe are emissions from traffic and residential combustion of solid fuels. Between 1990 and 2000, the BC and OC emissions are estimated to decline from 0.89 to 0.68 Tg and from 1.4 to 1.0 Tg, respectively. Most of the reduction occurred in the early 1990s in Eastern Europe owing to structural changes that resulted in energy efficiency improvements in industry and lower consumption of solid fuels in residential–commercial sector; the latter having strong impact on BC and OC emissions. Furthermore, the growth in transport volumes, and expected increase in emissions, was offset by introduction of stricter legislation for road transport from 1995. Focusing on the most important sectors, transport and residential combustion, the variation in measured carbonaceous emission shares and its impact on total emissions was evaluated. This analysis indicates a range of about −25% to +20% for BC and −7% and +15% for OC, compared to the central case.  相似文献   

5.
In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined.Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D.Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.  相似文献   

6.
Current atmospheric observations tend to support the view that continental tropospheric aerosols (particularly urban aerosols) show multimodal mass distributions in the size range of 0.01–100 μm. The origin of these aerosols is both natural and anthropogenic. Recently, trimodal sub-μm size distributions from combustion measurements at 0.008, 0.035 and 0.15 μm were also observed. Our interest in the present study is the secondary process of growth of sub-μm size aerosols by the coagulation process alone. Using the ‘J-space’ (integer-space) distribution method of Salk (Suck) and Brock (1979, J. Aerosol Sci.10, 58–590), we report an accurate numerical simulation study of the evolution of ultrafine to fine particle size distributions. Comparision with the analytic solution of Scott (1968, J. atmos. Sci.25, 54–64) was made to test the accuracy of our J-space or integer-space distribution method. Our multimodal sub-μ particle size distribution study encompassed the particle size range of 0.001–0.20 μm. Details of particle growth in each mode and interaction between different modes in the multimodal distribution were qualitatively analyzed.  相似文献   

7.
Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h(-1) and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources.  相似文献   

8.
A single-particle scintillation counter-analyser mounted in a light aircraft has been used to obtain information on the Na and K content of the particulates in the atmosphere of Sydney, Australia. A spatial resolution of 1 km is obtained along a 250-km flight path. Total mass loadings and loadings as a function of particle size for Na and K agree with published data for filter samples collected on the ground. Na/K ratios for individual plumes indicate soil dust and combustion are the principal contributors to urban haze detected by this method. The large sea-salt contribution is readily identified and significant sources of non-marine Na exist, particularly in the smaller size ranges. The results suggest that sea-salt contribution to the Na measured in coastal city aerosols may be overestimated.  相似文献   

9.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

10.
In this paper, source apportionment techniques are employed to identify and quantify the major particle pollution source classes affecting a monitoring site in metropolitan Boston, MA. A Principal Component Analysis (PCA) of paniculate elemental data allows the estimation of mass contributions for five fine mass panicle source classes (soil, motor vehicle, coal related, oil and salt aerosols), and six coarse panicle source classes (soil, motor vehicle, refuse incineration, residual oil, salt and sulfate aerosols). Also derived are the elemental characteristics of those source aerosols and their contributions to the total recorded elemental concentrations (i.e. an elemental mass balance). These are estimated by applying a new approach to apportioning mass among various PCA source components: the calculation of Absolute Principal Component Scores, and the subsequent regression of daily mass and elemental concentrations on these scores.One advantage of the PCA source apportionment approach developed is that it allows the estimation of mass and source particle characteristics for an unconventional source category: transported (coal combustion related) aerosols. This particle class is estimated to represent a major portion of the aerosol mass, averaging roughly 40 per cent of the fine mass and 25 per cent of the inhalable particle mass at the Watertown, MA site. About 45 per cent of the fine particle sulfur is ascribed to this one component, with only 20 per cent assigned to pollution from local sources. The composition of the coal related aerosol at this site is found to be quite different from particles measured in the stacks of coal-fired power plants. Sulfates were estimated to comprise a much larger percentage of the ambient coal related aerosol than has been measured in stacks, while crustal element percentages were much reduced. This is thought to be due to primary panicle deposition and secondary aerosol accretion experienced during transport. Overall, the results indicate that the application of further emission controls to local point sources of particles would have less influence on fine aerosol and sulfate concentrations than would the control of more distant emissions causing aerosols transported into the Boston vicinity.  相似文献   

11.
Abstract

Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h?1 and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources.  相似文献   

12.
Emissions from the combustion of biomass and fossil fuels result in generation of a large number of particle and gaseous products in outdoor and/or indoor air, which create health and environmental risks. Of particular importance are the very small particles that are emitted in large quantities from all the combustion sources, and that could be potentially more significant in terms of their impact on health and the environment than larger particles. It is important to quantify particle emissions from combustion sources for regulatory and control purposes in relation to air quality. This paper is a review of particle characteristics that are used as source signatures, their general advantages and limitations, as well as a review of source signatures of the most common combustion pollution sources including road transport, industrial facilities, small household combustion devices, environmental tobacco smoke, and vegetation burning. The current methods for measuring particle physical characteristics (mass and number concentrations) and principles of methodologies for measuring emission factors are discussed in the paper as well. Finally, the paper presents the recommendations for the future techniques for measurements of combustion products.  相似文献   

13.
An overview of the application of organic geochemistry to the analysis of organic matter on aerosol particles is presented here. This organic matter is analyzed as solvent extractable bitumen/ lipids by gas chromatography-mass spectrometry. The organic geochemical approach assesses the origin, the environmental history and the nature of secondary products of organic matter by using the data derived from specific molecular analyses. Evaluations of production and fluxes, with cross-correlations can thus be made by the application of the same separation and analytical procedures to samples from point source emissions and the ambient atmosphere. This will be illustrated here with typical examples from the ambient atmosphere (aerosol particles) and from emissions of biomass burning (smoke). Organic matter in aerosols is derived from two major sources and is admixed depending on the geographic relief of the air shed. These sources are biogenic detritus (e.g., plant wax, microbes, etc.) and anthropogenic particle emissions (e.g., oils, soot, synthetics, etc.). Both biogenic detritus and some of the anthropogenic particle emissions contain organic materials which have unique and distinguishable compound distribution patterns (C14-C40). Microbial and vascular plant lipids are the dominant biogenic residues and petroleum hydrocarbons, with lesser amounts of the pyrogenic polynuclear aromatic hydrocarbons (PAH) and synthetics (e.g., chlorinated compounds), are the major anthropogenic residues. Biomass combustion is another important primary source of particles injected into the global atmosphere. It contributes many trace substances which are reactants in atmospheric chemistry and soot paniculate matter with adsorbed biomarker compounds, most of which are unknown chemical structures. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular tracers are generally still source specific. Retene has been utilized as a tracer for conifer smoke in urban aerosols, but is not always detectable. Dehydroabietic acid is generally more concentrated in the atmosphere from the same emission sources. Degradation products from biopolymers (e.g., levoglucosan from cellulose) are also excellent tracers. An overview of the biomarker compositions of biomass smoke types is presented here. Defining additional tracers of thermally-altered and directly-emitted natural products in smoke aids the assessment of the organic matter type and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry can be applied successfully to provide tracers for studying the chemistry and dispersion of ambient aerosols and smoke plumes. Presented at the 6th FECS Conference on Chemistry and the Environment, Atmospheric Chemistry and Air Pollution, August 26–28, 1998, Copenhagen.  相似文献   

14.
Particle emissions from residential wood combustion in small communities in Northern Sweden can sometimes increase the ambient particle concentrations to levels comparable to densely trafficked streets in the center of large cities. The reason for this is the combination of increased need for domestic heating during periods of low temperatures, leading to higher emission rates, and stable meteorological conditions. In this work, the authors compare two different approaches to quantify the wood combustion contribution to fine particles in Northern Sweden: a multivariate source-receptor analysis on inorganic compounds followed by multiple linear regression (MLR) of fine particle concentrations and levoglucosan used as a tracer. From the receptor model, it can be seen that residential wood combustion corresponds with 70% of modeled particle mass. Smaller contributions are also seen from local nonexhaust traffic particles, road dust, and brake wear (each contributing 14%). Of the mass, 1.5% is explained by long-distance transported particles, and 2% derives from a regional source deriving from either oil combustion or smelter activities. In samples collected in ambient air, a significant linear correlation was found between wood burning particles and levoglucosan. The levoglucosan fraction in the ambient fine particulate matter attributed to wood burning according to the multivariate analysis ranged from < 2% to 50%. This is much higher than the fraction found in the emission from the boilers expected to be responsible for most emissions at this site (between 3% and 6%). A laboratory emission study of wood and pellet boilers gave 0.3% wt to 22% wt levoglucosan to particle mass, indicating that the levoglucosan fraction may be highly dependent on combustion conditions, making it uncertain to use it as a quantitative tracer under real-world burning conditions. Thus, quantitative estimates of wood burning contributions will be very uncertain using solely levoglucosan as a tracer.  相似文献   

15.
We propose a source of aerosols in the lower atmosphere associated with the creation, growth, and recombination of ubiquitous cosmogenically generated ions. This particle source should be favorable in the relatively clean, stable marine boundary layer, providing a uniform, continuous fine particle generator in the presence of dimethylsulfide emissions. Through this mechanism, new sulfate aerosols can be formed at sulfuric acid vapor partial pressures well below the supersaturations required for homogeneous binary nucleation of sulfuric acid/water solutions, which is consistent with numerous observations of new particle formation under sub-saturated conditions. The evolving aerosols in turn control the acid vapor concentration and thus modulate the sizes of the precursor ions and the rate of new particle formation. A simple model representing this nonlinear coupled system predicts that the physical and chemical processes connecting ions, vapors, and aerosols effectively constrain the particle population to a relatively narrow range of values. This self-limiting behavior may explain in part the apparent stability of the marine sulfate aerosol, with mean concentrations of the order of several hundred per cubic centimeter.  相似文献   

16.
ABSTRACT

We propose a source of aerosols in the lower atmosphere associated with the creation, growth, and recombination of ubiquitous cosmogenically generated ions. This particle source should be favorable in the relatively clean, stable marine boundary layer, providing a uniform, continuous fine particle generator in the presence of dimethylsulfide emissions. Through this mechanism, new sulfate aerosols can be formed at sulfuric acid vapor partial pressures well below the supersaturations required for homogeneous binary nucleation of sulfuric acid/water solutions, which is consistent with numerous observations of new particle formation under sub-saturated conditions. The evolving aerosols in turn control the acid vapor concentration and thus modulate the sizes of the precursor ions and the rate of new particle formation. A simple model representing this nonlinear coupled system predicts that the physical and chemical processes connecting ions, vapors, and aerosols effectively constrain the particle population to a relatively narrow range of values. This self-limiting behavior may explain in part the apparent stability of the marine sulfate aerosol, with mean concentrations of the order of several hundred per cubic centimeter.  相似文献   

17.
Abstract

Particle emissions from residential wood combustion in small communities in Northern Sweden can sometimes increase the ambient particle concentrations to levels comparable to densely trafficked streets in the center of large cities. The reason for this is the combination of increased need for domestic heating during periods of low temperatures, leading to higher emission rates, and stable meteorological conditions. In this work, the authors compare two different approaches to quantify the wood combustion contribution to fine particles in Northern Sweden: a multivariate source-receptor analysis on inorganic compounds followed by multiple linear regression (MLR) of fine particle concentrations and levoglucosan used as a tracer. From the receptor model, it can be seen that residential wood combustion corresponds with 70% of modeled particle mass. Smaller contributions are also seen from local nonexhaust traffic particles, road dust, and brake wear (each contributing 14%). Of the mass, 1.5% is explained by long-distance transported particles, and 2% derives from a regional source deriving from either oil combustion or smelter activities.

In samples collected in ambient air, a significant linear correlation was found between wood burning particles and levoglucosan. The levoglucosan fraction in the ambient fine particulate matter attributed to wood burning according to the multivariate analysis ranged from <2% to 50%. This is much higher than the fraction found in the emission from the boilers expected to be responsible for most emissions at this site (between 3% and 6%). A laboratory emission study of wood and pellet boilers gave 0.3%wt to 22%wt levoglucosan to particle mass, indicating that the levoglucosan fraction may be highly dependent on combustion conditions, making it uncertain to use it as a quantitative tracer under real-world burning conditions. Thus, quantitative estimates of wood burning contributions will be very uncertain using solely levoglucosan as a tracer.  相似文献   

18.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.  相似文献   

19.
Zhang JJ  Morawska L 《Chemosphere》2002,49(9):1059-1074
Emissions from the combustion of biomass and fossil fuels are a significant source of particulate matter (PM) in ambient outdoor and/or indoor air. It is important to quantify PM emissions from combustion sources for regulatory and control purposes in relation to air quality. In this paper, we review emission factors for several types of important combustion sources: road transport, industrial facilities, small household combustion devices, environmental tobacco smoke, and vegetation burning. We also review current methods for measuring particle physical characteristics (mass and number concentrations) and principles of methodologies for measuring emission factors. The emission factors can be measured on a fuel-mass basis and/or a task basis. Fuel-mass based emission factors (e.g., g/kg of fuel) can be readily used for the development of emission inventories when the amount of fuels consumed are known. Task-based emission factors (g/mile driven, g/MJ generated) are more appropriate when used to conduct comparisons of air pollution potentials of different combustion devices. Finally, we discuss major shortcomings and limitations of current methods for measuring particle emissions and present recommendations for development of future measurement techniques.  相似文献   

20.
The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS (‘molecular dating’); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo(ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct ‘dating’) studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号