首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49-0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.  相似文献   

2.
The TSP, SO4= and Pb levels observed downwind of a large refinery and in the city of Willemstad in Curaçao are presented. The results show that wiht increasing wind speed TSP and SO4= levels increase while Pb levels decrease. On the other hand, at relatively constant wind speeds a good correlation between TSP and Pb was observed.The correlation observed between TSP, SO4= and Pb and the wind speed, the effect of rain on the atmospheric levels observed during the sampling period, the lack of secondary pollutants (e.g. ozone, NO3?) and the composition of the island background air, allow us to conclude that the SO4= measured at the monitoring sites is mainly produced as a primary pollutant in the refinery, the high atmospheric TSP levels are due to refinery emissions (traditional source) and the recirculation of street dust particles (non traditional source) produced by traffic and the predominantly high wind velocity.The implication on air quality and control measures are discussed.  相似文献   

3.
Emission factors for agricultural operations are needed in order to develop reliable PM10 emissions inventories and air quality models for air basins with significant agricultural land use. A framework was developed to analyze the PM10 vertical profiles collected downwind of tilling operations in the San Joaquin Valley. The methods calculate emission factors on the basis of profile shape and assign quality ratings to each land preparation test. Uncertainties in the calculated emission factors and plume heights were used as one criterion for evaluating the relative quality of the reported emission factor. Other quality ratings were based on the magnitude of the difference in measured up- and downwind concentrations, wind direction, whether the tests were conducted near the edges of the field, and how well the proposed model fit the profile data. The emission factors from different operations were compared taking the quality of the emission factor into account. Plume heights and emission factors for 24 valid test profiles ranged from 2 to 20 m (mean=9.8; SD=3.6; median=9.8) and zero to 800 mg m−2 (mean=152; SD=240; median=43), respectively. Key environmental properties governing PM10 emission from these operations include relative humidity, soil moisture and vertical temperature gradient. Surprisingly, no discernable relationships were found between implement type or wind speed and the measured emission factors.  相似文献   

4.
To investigate the impacts of major factors on carbon loss via gaseous emissions, carbon dioxide (CO2) and methane (CH4) emissions from the ground of open dairy lots were tested by a scale model experiment at various air temperatures (15, 25, and 35 °C), surface velocities (0.4, 0.7, 1.0, and 1.2 m sec?1), and floor types (unpaved soil floor and brick-paved floor) in controlled laboratory conditions using the wind tunnel method. Generally, CO2 and CH4 emissions were significantly enhanced with the increase of air temperature and velocity (P < 0.05). Floor type had different effects on the CO2 and CH4 emissions, which were also affected by air temperature and soil characteristics of the floor. Although different patterns were observed on CH4 emission from the soil and brick floors at different air temperature-velocity combinations, statistical analysis showed no significant difference in CH4 emissions from different floors (P > 0.05). For CO2, similar emissions were found from the soil and brick floors at 15 and 25 °C, whereas higher rates were detected from the brick floor at 35 °C (P < 0.05). Results showed that CH4 emission from the scale model was exponentially related to CO2 flux, which might be helpful in CH4 emission estimation from manure management.

Implications: Gaseous emissions from the open lots are largely dependent on outdoor climate, floor systems, and management practices, which are quite different from those indoors. This study assessed the effects of floor types and air velocities on CO2 and CH4 emissions from the open dairy lots at various temperatures by a wind tunnel. It provided some valuable information for decision-making and further studies on gaseous emissions from open lots.  相似文献   

5.
CALPUFF is an atmospheric source-receptor model recommended by the U.S. Environmental Protection Agency for use on a case-by-case basis in complex terrain and wind conditions. The ability of the model to provide useful information for exposure assessments in areas with those topographical and meteorological conditions has received little attention. This is an important knowledge gap for use of CALPUFF outside of regulatory applications, such as exposure analyses conducted in support of risk assessments and health studies. We compared deposition of cadmium (Cd), lead (Pb), and zinc (Zn) calculated with CALPUFF as a result of emissions from a zinc smelter with corresponding concentrations of the metals measured in attic dust and soil samples obtained from the surrounding area. On a point-by-point analysis, predictions from CALPUFF explained 11% (lead) to 53% (zinc) of the variability in concentrations measured in attic dust. Levels of heavy metals in soil interpolated to 100 residential addresses from the distribution of concentrations measured in soil samples also agreed well with deposition predicted with CALPUFF: R2 of 0.46, 0.76, and 079 for Pb, Cd, and Zn, respectively. Community-average concentrations of Cd, Pb, and Zn measured in soil were significantly (p < 0.0001) and strongly correlated (R2 ranged from 0.77 to 0.98) with predicted deposition rates. These findings demonstrate that CALPUFF can provide reasonably accurate predictions of the patterns of long-term air pollutant deposition in the near-field associated with emissions from a discrete source in complex terrain. Because deposition estimates are calculated as a linear function of air concentrations, CALPUFF is expected to be reliable model for prediction of long-term average, near-field ambient air concentrations in complex terrain as well.  相似文献   

6.
We conducted multi-year observations of nitric oxide (NO) fluxes from typical vegetable fields in the Yangtze River delta, which is located in southeastern China. Flux measurements were performed manually twice per week at intervals of 2–3 days, in both fertilized and unfertilized fields, over an investigation period of 1448 days (September 2004–August 2008). In total, twelve vegetable-growing periods and a short fallow period were investigated. On average, the NO fluxes from the fertilized plots were 21 times higher than fluxes from the unfertilized plots (p < 0.001). Peak NO emissions usually occurred soon after the addition of nitrogenous fertilizer. Peak emissions took place during about 15% of the whole investigation time, but contributed to approximately 89% of the total NO release. The annual background NO emissions (from fields without nitrogen amendment) were observed at 0.290 ± 0.019 (standard deviation of 3 observations) kg N ha?1. The total amounts of NO emitted during the individual vegetable-growing periods correlated positively and exponentially with the products of seasonal mean soil temperatures and nitrogen addition rates (R2 = 0.87, p < 0.001). The mean direct NO emission factor (EFd, the loss rate of fertilizer nitrogen via NO emissions) for the four-year period was determined to be 0.51% ± 0.11% (standard error of 3 observations). The EFds of individual vegetable-growing seasons ranged from 0.05% to 1.24%, varying linearly and positively with the products of seasonal mean soil temperatures and nitrogen addition rates (R2 = 0.58, p < 0.01). The observed interaction of soil temperature and nitrogen addition on NO emission in seasonal totals and EFds occurred in soils with moisture contents ranging from 55% to 100% water-filled pore space (mean: 79%; standard deviation: 9%). The results of this study indicate that when other conditions remain relatively stable, the direct emission factor, a key parameter for compiling an inventory of NO emissions from vegetable fields, may vary with not only soil temperature but also nitrogen addition.  相似文献   

7.
A 20-m Asian dust monitoring tower was installed at Erdene in Dornogobi, Mongolia in later 2008, which is one of the high Asian dust source regions in the Asian domain, to investigate meteorological conditions for the dust events. The tower was equipped with meteorological sensors (temperature, humidity and wind speed at four levels, precipitation and pressure near the surface), radiation sensors (solar radiation, net radiation) and soil measurement sensors (soil moisture and soil temperature at three levels and soil heat flux at one level) and turbulent measurement (sonic anemometer) at the 8 m height and PM10 concentration measurement (beta guage) at the 3 m height. Measurement was made for a full year of 2009. The observed data indicated that dust events occur all year round with the maximum hourly mean maximum concentration of 4107 μg m?3 in the early May to a minimum of 92 μg m?3 in later August. It was found that the dust concentration at this site is directly related to the wind speed exceeding the threshold wind speed (likewise the corresponding friction velocity) during the winter to early spring. However, the observed dust concentration is not only related to the wind speed exceeding the threshold wind speed but also to the Normalized Difference Vegetation Index (NDVI) during the late spring to the late autumn due to the growth of vegetation. It was also found that the surface soil moisture content does not affect the dust concentration due to the relatively short residence time of the soil moisture in the surface soil. The presently monitored data can be used to verify parameters used in the Asian Dust Aerosol Model (ADAM) that is the operational forecasting dust model in the Korea Meteorological Administration (KMA).  相似文献   

8.
Hourly total hydrocarbon (THC) data, spanning 1990–2008 from a California air pollution station located near the Coal Oil Point (COP) seep field, were analyzed and clearly showed geologic CH4 emissions as the dominant local source. Annual COP emissions are conservatively estimated as 0.015 Tg CH4 year?1 and represent a natural and concentrated geologic methane source (24 m3 m?2 day?1 gas flux at some active seeps, Clark et al., 2010). For a sense of the scale and potential importance to the regional Southern California methane budget, COP emits an amount equivalent to 8% of the estimated Los Angeles County anthropogenic emissions. Station THC measurements near COP showed a strong wind dependency with elevated levels closely correlated with a sonar-derived spatial distribution of seep field emissions. THC varied seasonally, with a maximum in January and minimum in July and a peak-to-peak amplitude of 0.24 ppm. The seasonal signal was more readily apparent midday (R2 = 0.69 harmonic fit), compared to nighttime and morning (R2 < 0.45). The bimodal diel THC pattern consisted of seasonally-modulated peaks in the morning and evening.THC temporal and spatial trends were consistent with both transport and source emission variations. Long-term, annual seep field emissions consistently decreased on a field-wide basis until the late 1990s, before increasing consistently, most likely as a function of underlying geologic processes. This study demonstrates the value of municipal air quality monitoring stations for insight into local greenhouse gas sources and highlights the non-negligible and variable contribution from marine geologic seepage.  相似文献   

9.
Abstract

The primary health concern associated with exposures to chromite ore processing residue (COPR)-affected soils is inhalation of hexavalent chromium [Cr(VI)] particulates. Site-specific soil alternative remediation standards (ARSs) are set using soil suspension and dispersion models to be protective of the theoretical excess cancer risk associated with inhalation of soil suspended by vehicle traffic and wind. The purpose of this study was to update a previous model comparison study that identified the 1995 AP-42 particulate emission model for vehicle traffic over un-paved roads and the Fugitive Dust Model (FDM) as the most appropriate model combination for estimating site-specific ARSs. Because the AP-42 model has been revised, we have updated our past evaluation. Specifically, the 2006 AP-42 particulate emissions model; the Industrial Source Complex–Short Term model, version 3 (ISCST3); and the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) air dispersion models were evaluated, and the results were compared with those from the previously used modeling approaches. Two sites with and two sites without vehicle traffic were evaluated to determine if wind erosion is a significant source of emissions. For the two sites with vehicle traffic, both FDM and ISCST3 produced total suspended particulate (TSP) estimates that were, on average, within a factor of 2 of measured; whereas AERMOD produced estimates that were as much as 5-fold higher than measured. In general, the estimated TSP concentrations for FDM were higher than those for ISCST3. For airborne Cr(VI), the ISCST3 model produced estimates that were only 2- to 8-fold of the measured concentrations, and both FDM and AERMOD estimated airborne Cr(VI) concentrations that were approximately 4- to 14-fold higher than measured. Results using the 1995 AP-42 model were closer to measured than those from the 2006 AP-42 model. Wind erosion was an insignificant contributor to particulate emissions at COPR sites.  相似文献   

10.
Emissions of soil fumigants are regulated to protect air quality in California. Irrigation prior to fumigation can reduce fumigant emissions at relatively low costs; however, the optimum range of soil water content that reduces emissions without reducing efficacy is not clearly defined. The objective of this study was to determine the effects of soil water content [at 30, 45, 60, 75, 90 and 100% field capacity (FC)] on the emission and distribution of fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) in columns packed with a sandy loam soil. After injecting equal amounts of cis-1,3-D, trans-1,3-D, and CP, fumigant emissions and distribution in soil were monitored for 14 days. Emissions of all three compounds showed similar response to soil water content except that CP emissions were lower than both isomers of 1,3-D. The emission peak flux was highest and occurred earliest in the driest soil while it was reduced and delayed as soil water content increased. After the peak, emission flux decreased rapidly in the driest soil but more slowly in higher water content treatments. Initially, higher soil water content resulted in substantially lower cumulative emissions among the treatments, but as time progressed, the differences in cumulative emissions decreased or even disappeared. These trends were likely due to the effect of the closed-bottom short soil columns which allowed fumigants to only move upward and contribute to emission. Higher fumigant concentrations in the soil–gas phase were observed in high soil water content treatments, due to less emission loss and more fumigant retained in the soil.  相似文献   

11.
Abstract

Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (<100 µm) concentrations at the boundary of gravel sites ranged from 280 to 1290 µg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 µg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 µg/m3, were also above the daily air quality standard of 125 µg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 µg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 µm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

12.
Annual and seasonal variabilities in source contribution to total suspended particles (TSP) measured over an urban location in western India, Ahmedabad between May 2000 and January 2003 are examined in this study. Positive matrix factorization (PMF) resolved six factors including airborne regional dust, calcium carbonate rich dust, biomass burning/vehicular emissions, secondary nitrate/sulfate, marine aerosol, and smelter. In this study, non-parametric statistical tests including the Kruskal–Wallis analysis of variance (K–W ANOVA) and Spearman rank correlation (ρ) test were used to assess the annual and seasonal variations in factor contributions, and the influence of meteorology on these contributions, respectively. None of the factor contributions exhibited annual variations except airborne regional dust, and biomass burning/vehicular emissions factors. All of the factors exhibited seasonal variations. Several factor monsoon (July–September) median concentrations were significantly different from one or more of the other season medians. In general, it appeared that meteorological factors played a role in establishing the seasonal behavior of factor contributions. Factor contributions exhibited low to moderate correlations with meteorological parameters such as temperature, relative humidity, wind direction, and wind speed. Amongst all of the relationships, marine aerosol factor was reasonably well correlated with relative humidity (ρ = 0.73) and wind direction (ρ = 0.73) during the pre-monsoon season (March–May). This observation suggests that the aerosol transported by moisture laden winds from the Arabian sea contribute to this factor. The airborne regional dust factor was also moderately correlated with wind speed (ρ = 0.70) during the post-monsoon season. This relationship indicates that high regional dust concentrations are favored by high wind speeds and the resultant increase in dispersion.  相似文献   

13.
A procedure to assess pesticide emission to the air and characterise possible air pollution sources was carried out using a tracer dye and 2 mm PVC lines during air-assisted spraying of an artificial vineyard. Three experiments were performed to evaluate the method feasibility, quantify upward movements of sprayed droplets and investigate the influence of microclimatic variables on pesticide emission. During each experiment two test series were carried out with two droplet size distributions (very fine and fine spray, according to the BCPC classification). The amount of sprayed liquid collected at 2.5 m above ground varied between 9.0% and 10.7% of the total dose applied for very fine spray and between 5.6% and 7.3% for fine spray. In stable atmospheric conditions the spray drifted along the mean wind direction over the crop whereas in unstable conditions the sprayed liquid plume was larger, with a greater amount of material sent to higher levels. A statistical model based on a simple multiple regression featuring droplet characteristics and microclimatic variables (wind speed, temperature, stability parameter and relative humidity) provided a robust estimate of spray loss just above the crop, with an acceptable determination coefficient (R2=0.84). This method is therefore suitable for quantifying spray drift and provides a way to study the influence of several variables on the amount of pesticide released into the atmosphere by air-assisted spraying, with suitable accuracy.  相似文献   

14.
A study to investigate the dynamical characteristics of particle matter emissions in a working open yard is conducted in Caofeidian Port of Hebei Province, China. The average diurnal concentrations of the total suspended particulate (TSP) matter and respirable particulate matter (PM10 and PM5) are monitored during the field measurement campaign. Sampling is performed at a regular interval at 8 monitoring stations in the yard with normal industrial activities. The average TSP, PM10 and PM5 concentrations range from 285 to 568, 198 to 423 and 189 to 330 μg.m-3 in the yard, respectively. The linear regression correlation coefficient of TSP/PM10 and TSP/PM5 is 0.95±0.01 and 0.88±0.02, respectively.By using the Spearman correlation method, the wind speed and relative humidity are both weakly correlated with the PM10 and PM5 concentrations according to the measurements. In addition, industrial operation activities, such as vehicular traffic in the yard and the loading time of stackers, are significantly positively correlated with the PM concentration. Using the multivariate regression method, the main parameters influencing the TSP concentration variations are integratedly analysed. The traffic volume is found to be a significant predictor of TSP concentration variation, with the smallest P value (P<0.05).To understand the dynamical characteristics of particle emissions in the yard, the emissions from the truck transports, that is, from unpaved haul roads and from the loading process, are established. Then, the dynamical emission factor (EFD) based on the industrial activities in the yard is proposed. The dynamical emissions average 5.25x105 kg.year-1 and EFD is evaluated to be 0.29 kg.(ton.day)-1 during the measurement period. These outcomes have meaningful implications not only for understanding the dynamical characteristics of particle emissions in the working stockyard but also for implementing effective control measures at appropriate sites in the harbour area.  相似文献   

15.
The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US. For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall, the model performs very well, yielding R2 statistics as high as 0.80. The analysis confirms that ozone is generally increasing with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses major NOx emission sources.  相似文献   

16.
Travel on unpaved public roads is the single largest anthropogenic source of emissions of airborne particles in the U.S. The average impact of this source on average annual mean total suspended particulate (TSP) concentrations varies from 0.05 μg/m3 (Alaska) to 11 μg/m3 (Pennsylvania). When compared by contributions to the variance in state to state TSP levels, their impact is as great as the impact of emissions from all conventional sources. Common emission control methods include paving, oiling, speed reduction, watering, and application of calcium chloride. Total annual emissions are, in most cases, most economically reduced by either speed control or paving, with expected average control costs of less than $0.50/lb of emissions reductions. For most roads with average daily traffic flows above 100 vehicles per day, paving is shown to control emissions at average costs of less than $0.05/lb. In some situations, the costs of paving are more than offset by reductions in maintenance costs. Thus it would appear that, even accounting for the order of magnitude lower impact on statewide average concentration per ton of particles emitted from open sources, control of dust emissions from unpaved roads offers an economical means for reducing ambient TSP levels.  相似文献   

17.
Under the 11th Five Year Plan (FYP, 2006–2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011–2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.  相似文献   

18.
From January 1996 to June 1997, we carried out a series of measurements to estimate emissions of PM10 from paved roads in Riverside County, California. The program involved the measurement of upwind and downwind vertical profiles of PM10, in addition to meteorological variables such as wind speed and vertical turbulent intensity. This information was analyzed using a new dispersion model that incorporates current understanding of micrometeorology and dispersion. The emission rate was inferred by fitting model predictions to measurements. The inferred emission factors ranged from 0.2 g VKT-1 for freeways to about 3 g VKT-1 for city roads. The uncertainty in these factors is estimated to be approximately a factor of two since the contributions of paved road PM10 emissions to ambient concentrations were comparable to the uncertainty in the mean value of the measurement. At this stage, our best estimate of emission factor lies between 0.1 and 10 g VKT-1; there is some indication that it is about 0.1 g VKT-1 for heavily traveled freeways, and is an order of magnitude higher for older city roads. We found that measured silt loadings were poor predictors of emission factors.The measured emission factors imply that paved road emissions may contribute about 30% to the total PM10 emissions from a high traffic area such as Los Angeles. This suggests that it is necessary to develop methods that are more reliable than the upwind–downwind concentration difference technique.  相似文献   

19.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

20.
ABSTRACT

Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions.

A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway).

A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号