首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An instrument was developed for semi-continuous measurement of the size-distribution of submicron nitrate, ammonium, sulphate and chloride. Novel in the instrumentation is the size-classification, which is realised with a pre-separator that consists of a set of four parallel impactors. The cut-off diameters of the impactors are at 0.18, 0.32, 0.56 and 1.0 μm. Aerosols smaller than the associated cut-off size pass the respective impactor and arrive in the detector. The manifold with impactors contains two additional lines, one open line and one containing a filter that removes all aerosols. This latter line provides an on-line field-blank. The sample air-flow is automatically switched by wide-bore ball valves to one of the six sampling lines for a period of 20 min; a measuring cycle thus takes 2 h.Down-stream of the pre-separator the sampling and automated on-line analysis of the transmitted aerosol is accomplished with a “MARGA”. In this instrument steam condensation is used to grow the aerosol. The droplets formed are collected in a cyclone that drains to wet-chemical analysis systems. A wet-denuder between pre-separator and collector removes interfering gases, like nitric acid and ammonia. This enables artefact-free and thus representative semi-continuous measurement of the size-distribution of the semi-volatile (ammonium) nitrate.The novel MARGA-sizer was first used in a 1 week field-test. After modifications it was then deployed in a monitoring campaign of 2 months in the summer of 2002, at the top level of the meteo-tower of Cabauw in the centre of the Netherlands. The high location, 200 m, was chosen to obtain data on ammonium nitrate that are minimally affected by surface emissions of ammonia. The data coverage over the period was over 60%; failure of the instrumentation was mainly associated with spells of extreme solar heating of the tower and associated high temperatures inside.The average concentration of nitrate was 2.6 μg m−3, which was very similar to the value interpolated from data in the national network. The mass concentration of submicron nitrate was 2.0 μg m−3, of which 46% was in particles smaller than 0.32 μm. To put this in perspective: the concentration of submicron sulphate was similar to that of nitrate, while 53% was in particles smaller than 0.32 μm. The ion balance showed that the compounds were present as the fully neutralised salts. Quite large diurnal variations were observed for nitrate, with a surprising maximum in the afternoon. The size-distribution of the semi-volatile nitrate was rather constant over a daily cycle.  相似文献   

2.
Two methods for measuring aerosol elemental carbon (EC) are compared. Three-hour integrated carbon samples were collected on quartz filters during the summer of 1990 in Uniontown, PA, primarily during episodes of elevated particulate pollution levels. These samples were analyzed for EC and organic carbon (OC) using a thermo/optical reflectance (TOR) method. Aerosol black carbon (BC) was measured using an Aethalometer, a semi-continuous optical absorption method. The optical attenuation factor for ambient BC was supplied by the instrument manufacturer. Three-hour average concentrations were calculated from the semi-continuous BC measurements to temporally match the EC/OC integrated quartz filter samples. BC and EC concentrations are highly correlated over the study period (R2=0.925). The regression equation is BC (μg m-3)=0.95 (±0.04) EC−0.2 (±0.4). The means of 3 h average measurements for EC and BC are 2.3 and 2.0 μg m-3, respectively, average concentrations of EC and BC ranged from 0.6 to 9.4 and 0.5 to 9.0 μg m-3 respectively. TOR OC and EC concentrations were not highly correlated (R2=0.22). The mean OC/EC ratio was 1.85.The 10-week Aethalometer hourly dataset was analyzed for daily and weekly temporal patterns. A strong diurnal BC pattern was observed, with peaks occurring between 7 a.m. and 9 a.m. local time. This is consistent with the increase in emissions from ground level combustion sources in the morning, coupled with poor dispersion before daytime vertical mixing is established. There was also some indication of a day-of-week effect on BC concentrations, attributed to activity of local ground level anthropogenic sources. Comparison of BC concentrations with co-located measurements of coefficient of haze in a separate field study in Philadelphia, PA, during the summer of 1992 showed good correlation between the two measurements (R2=0.82).  相似文献   

3.
A radiation fog physics, gas- and aqueous-phase chemistry model is evaluated against measurements in three sites in the San Joaquin Valley of California (SJV) during the winter of 1995. The measurements include for the first time vertically resolved fog chemical composition measurements. Overall the model is successful in reproducing the fog dynamics as well as the temporal and spatial variability of the fog composition (pH, sulfate, nitrate, and ammonium concentrations) in the area. Sulfate production in the fog layer is relatively slow (1–4 μg m−3 per fog episode) compared to the episodes in the early 1980s because of the low SO2 concentrations in the area and the lack of oxidants inside the fog layer. Sulfate production inside the fog layer is limited by the availability of oxidants in the urban areas of the valley and by SO2 in the more remote areas. Nitrate is produced in the rural areas of the valley by the heterogeneous reaction of N2O5 on fog droplets, but this reaction is of secondary importance for the more polluted urban areas. The gas-phase production of HNO3 during the daytime is sufficient to balance the nitrate removed during the nighttime fog episodes. Entrainment of air from the layer above the fog provides another source of reactants for the fog layer. Wet removal is one of most important processes inside the fog layer in SJV. We estimate based on the three episodes investigated during IMS95 that a typical fog episode removes 500–2000 μg m−2 of sulfate, 2500–6500 μg m−2 of nitrate, and 2000–3500 μg m−2 of ammonium. For the winter SJV valley the net fog effect corresponds to reductions in ground ambient concentrations of 0.05–0.2 μg m−3 for sulfate, 3–6 μg m−3 for total nitrate, and 1–3 μg m−3 for total ammonium.  相似文献   

4.
Fine particle nitrate concentrations were measured at 10-min intervals for approximately 9.5 months beginning on 14 February 2002, at the Baltimore Supersite Ponca St. location using an R&P 8400N semi-continuous monitor. The measurement results were used to characterize seasonal and shorter-term excursions in nitrate concentrations and determine their influence on PM2.5 concentrations. Over the 9.5-month study period, nitrate levels of 1.7±1.6 μg m−3 accounted for 11.4% of the PM2.5 mass. Monthly averages ranged from 0.8 μg m−3 in August to 2.9 μg m−3 in November, and accounted for 4.7–17.3% of monthly PM2.5 mass. Hourly averages, however, were often larger, especially in the colder months, owing to numerous relatively short-term transients, where hourly nitrate concentrations exceeded 5.0 μg m−3. These often occurred along with NOx and ultrafine particle transients during the morning commute hours.A total of 275 short-term transients (31.7% of the total) exceeding 1.0 μg m−3 were identified. These were associated with one of three sets of conditions. The first, most typical (177, i.e. 64.4% of the 275 incidences), is characterized by high NOx typically between 0500 and 0800EST and is attributed to early morning commute traffic activity. The second type occurred during the afternoon due to photochemical activity. The excursions in the afternoon occurred infrequently (only 9.5% of all the observed transients) during the study period and were characterized by less elevated nitrate concentrations than morning and nighttime transients. The third (72, i.e. 26.2% of the 275 transients) occurred at night, typically between 2000EST and 0200EST.Multiple linear regression analysis between nitrate excursions and volume size distributions indicates that particulate nitrate observed is closely related to the near accumulation (0.1–0.2 μm) and droplet modes (0.5–1.0 μm) in the morning hours, and associated with the droplet (0.5–1.0 μm) and coarse modes (1.0–2.5 μm) for nighttime transients, suggesting that processes governing particulate nitrate formation depend on time-of-day.  相似文献   

5.
Airborne measurements of the growth of the marine accumulation mode after multiple cycles through stratocumulus cloud are presented. The nss-sulphate cloud residual mode was log-normal in spectral shape and it’s mode radius was observed to progressively increase in size from 0.78 to 0.94 μm over 155 min of air parcel evolution through the cloudy marine boundary layer. The primary reason for this observed growth was thought to result from aqueous phase oxidation of SO2 to aerosol sulphate in activated cloud drops. An aqueous phase aerosol–cloud-chemistry model was used to simulate this case study of aerosol growth and was able to closely reproduce the observed growth. The model simulations illustrate that aqueous phase oxidation of SO2 in cloud droplets was able to provide enough additional sulphate mass to increase the size of activated aerosol. During a typical cloud cycle simulation, ≈4.6 nmoles kg-1air (0.44 μg m-3) of sulphate mass was produced with ≈70% of sulphate production occurring in cloud droplets activated upon sea-salt nuclei and ≈30% occurring upon nss-sulphate nuclei, even though sea-salt nuclei contributed less than 15% to the activated droplet population. The high fraction of nss-sulphate mass internally mixed with sea-salt aerosol suggests that aqueous phase oxidation of SO2 in cloud droplets activated upon sea-salt nuclei is the dominant nss-sulphate formation mechanism and that sea-salt aerosol provides the primary chemical sink for SO2 in the cloudy marine boundary layer.  相似文献   

6.
Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO2 ranging from 0.5 to above 40 μg S m−3. The main components in the airborne particles are (NH4)2SO4 and CaSO4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l−1 at the most rural site (LGS) to about 200 μeq l−1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l−1, while the total nitrogen concentration is between 30 and 150 μeq l−1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.  相似文献   

7.
SO2 dry deposition was studied over short vegetation, in Portugal, by means of the concentration gradient method. The experimental study involved one first phase of long-term measurements carried out in a grassland and, subsequently, a second period of several 1997 intensive field campaigns performed in three places representing different climate and surface conditions. Temporal and spatial patterns of dry deposition parameters show that downward fluxes of SO2 are by some extent affected by surface processes. Median Rc varied from 140 s cm−1 to values around 200 s cm−1, in a wide range of environmental conditions. Stomatal uptake is an important sink when vegetation is biologically active, but its contribution is effectively low when compared with non-stomatal mechanisms, especially when the surface is wet. Under dry conditions Rc increases by a factor of two, but SO2 deposition rates then still are significant. The parameterisation of the surface resistance for SO2 proved to be difficult, but Vd derived with the Erisman parameterisation (Erisman et al., Atmos. Environ. 28 (16) (1994) 2595) compared best with measured values, at low time resolution scale and especially under moisture conditions.  相似文献   

8.
Studies on the effect of NOx on zinc corrosion are scarce and their results are variable and at times seemingly contradictory. This paper reports laboratory tests involving the dry deposition on zinc surfaces of 800 μg m−3 NO2, alone and in combination with 800 μg m−3 SO2, at temperatures of 35 and 25 °C and relative humidities of 90% and 70%. From the gravimetric results obtained and from the characterisation of the corrosion products by optical microscopy, scanning electron microscopy (SEM/EDX), grazing incidence X-ray diffraction (GIXD) and X-ray photoelectron spectroscopy (XPS), it has been verified that the corrosive action of NO2 alone is negligible compared with SO2. However, an accelerating effect has been observed when NO2 acts in conjunction with SO2 at 25 °C and 90% RH. At 35 °C and 90% RH, the accelerating effect is smaller, and at low relative humidities (70%), the synergistic effect is only slight, which suggests it may be favoured by the presence of moisture. In those cases where an accelerating effect has been observed, a greater proportion of sulphate ions has been found in the corrosion products, and nitrogen compounds have not been detected, indicating that NO2 participates indirectly as a catalyst of the oxidation of SO2 to sulphate.  相似文献   

9.
Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM2.5 as well as particle precursors SO2 and NOx from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM2.5, making use of a source–receptor matrix developed for health risk assessment. For primary PM2.5, we found a median iF of 1.2 per million, with a range of 0.12–25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO2 emissions, the median iF was 0.41 per million (range: 0.050–10), versus 0.068 per million for secondary ammonium nitrate from NOx emissions (range: 0.00092–1.3). The median distance to half of the total exposure was greater for secondary PM2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM2.5 iF (R2=0.83) as well as secondary sulfate and nitrate iF (R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM2.5 or primary PM2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM2.5 in urban areas due to the substantial contribution of near-source populations.  相似文献   

10.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

11.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

12.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

13.
We investigated soil surface resistance Rc to dry deposition of sulfur dioxide (SO2) onto different types of soils in laboratory experiments, using samples collected from the arid loess plateau and deserts of northern China. We evaluated the factors that affect Rc, which depends on the physical and chemical interaction between a trace constituent and the deposition surface. We observed that the values of Rc for SO2 decreased with increase of soil weight and increased with SO2 concentration, although surface coverage had little effect on Rc. The SO2 uptake rate by all the northern Chinese soil samples seemed to be, on the whole, dependent on relative humidity (RH). In all of the northern Chinese soil samples, Rc was in the range 0.028–0.65 s mm−1, and was exponentially related to the effective surface area of each soil sample, regardless of RH. Wet chemical analysis of sulfur deposited onto the soil samples showed that oxidation ratio of sulfur(IV) to sulfur(VI) was related to RH, which might be related to complex interactions among the amount of water on the soil sample, the pH, and the metallic ions in the liquid phase.  相似文献   

14.
A formal intercomparison of fine particle elemental (black) carbon is conducted involving three real-time semi-continuous measurement systems. Two-hourly interval time-resolved measurements of organic carbon (OC) and elemental carbon (EC) were performed at the Gosan site, Korea during Atmospheric Brown Clouds–East Asian Regional Experiment 2005 (ABC-EAREX2005) campaign. They were operated by the same semi-continuous field carbon instruments of Sunset Laboratory (thermal optical transmittance) in PM2.5 particulate. However, their thermal protocols (four and two steps for OC and five and two steps for EC) were different. The co-located 1 min black carbon (BC) concentrations were compared by an Aethalometer for an intercomparison study.As a result, the poor R2 of OC between two different temperature protocols suggested that OC can be significantly more biased by the slight differences of maximum temperature (870 and 840 °C) and a number of temperature steps (four steps and two steps) with their hold times. However, EC that is a smaller fraction of total carbon (TC) shows the good agreement between two different protocols, which are under a mixture of 2% O2 and 98% He in six temperature steps and two temperature steps as max as 900 and 880 °C with the slope of 1.05±0.15 (R2 of 0.98). The different slopes between EC and BC, which show the range of 1.23–1.61, demonstrate the variability of the attenuation coefficient of the BC particulate.  相似文献   

15.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

16.
Measurements of negative chemiions (CI) emitted by a jet engine at the ground were made with an ion trap mass spectrometer. The new instrument offered a high-mass resolution, which led to a first unambiguous identification of negative CI formed by a jet engine. The observed ions are HSO4(H2SO4)a clusters proved by an isotope study. From the mass spectra an efficiency ε for fuel sulfur conversion to SVI of 2%±0.8 could be inferred. In addition thermodynamic properties of the observed cluster ions were inferred from measured ion abundance ratios. An effective free energy ΔGa−1,a0=−14 kcal/mol was calculated (for a=3) and an enthalpy of ΔHa−1,a0=−24 (for a=3) kcal/mol was estimated. This indicates a low stability of HSO4(H2SO4)a (a⩾3) cluster ions against thermal detachment of H2SO4 at the high temperatures of our experiment. However the low temperatures at cruise altitudes around 10–12 km lead to high H2SO4/H2O supersaturation and therefore a rapid growth of HSO4(H2SO4)a cluster ions seems to be possible which is not hindered by thermal H2SO4 detachment.  相似文献   

17.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

18.
Aircraft measurements of air pollutants were made to investigate the characteristic features of long-range transport of sulfur compounds over the Yellow Sea for the periods of 26–27 April and 7–10 November in 1998, and 9–11 April and 19 June in 1999, together with aerosol measurements at the Taean background station in Korea. The overall mean concentrations of SO2, O3 and aerosol number in the boundary layer for the observation period ranged 0.1–7.4 ppb 32.1–64.1 ppb and 1.0–143.6 cm−3, respectively. It was found that the air mass over the Yellow Sea had a character of both the polluted continental air and clean background air, and the sulfur transport was mainly confined in the atmospheric boundary layer. The median of SO2 concentration within the boundary layer was about 0.1–2.2 ppb. However, on 8 November, 1998, the mean concentrations of SO2 and aerosol number increased up to 7.4 ppb and 109.5 cm−3, respectively, in the boundary layer, whereas O3 concentration decreased remarkably. This enhanced SO2 concentration occurred in low level westerly air stream from China to Korea. Aerosol analyses at the downstream site of Taean in Korea showed 2–3 times higher sulfate concentration than that of other sampling days, indicating a significant amount of SO2 conversion to non sea-salt sulfate during the long-range transport.  相似文献   

19.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

20.
A laser induced fluorescence (LIF) instrument has been developed to measure tropospheric NO2 with low detection limit. The instrument design, development and first measurements are reported. There are also details of the temporal gate system built for the fluorescence acquisition. The instrument is able to make fast measurements (up to 4 Hz) and shows a limit of detection of 10 pptv/60 s. Continuous observations (2 weeks in summer 2007) in a small town in central Italy were used to test the performance of the instrument and to study the photochemistry of ozone in a background site. LIF and a commercial chemiluminescence (CL) instrument simultaneous observations of NO2 show a good linearity (LIF = 1.02 CL + 0.6 (ppb), R2 = 0.98) but there is a bias of the commercial instrument of about 0.60 ppbv on average. The overestimation of the CL system is probably due to conversion of NOy species into NO by the molybdenum converter used in the CL instrument to detect NO2. Analysis of 1 s data is used to test the instrument response and the coupling between nitrogen oxides and ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号