首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whilst limited information on particle size distributions and number concentrations in cities is available, very few data on the very smallest of particles, nanoparticles, have been recorded. Measurements in this study show that road traffic and stationary combustion sources generate a significant number of nanoparticles of diameter <10 nm. Measurements at the roadside (4 m from the kerb) and downwind from the traffic (more than 25 m from the kerb) show that nanoparticles (<10 nm diameter) accounted for more than 36–44% of the total particle number concentrations. Measurements designed to sample the plume of individual vehicles showed that both a diesel- and a petrol-fuelled vehicle generated nanoparticles (<10 nm diameter). The fraction of nanoparticles was even greater in a plume 350 m downwind of a stationary combustion source. On a few occasions, a temporal association between nanoparticles in the size range 3–7 nm and solar radiation was observed in urban background air at times when no other local sources were influential, which suggests that homogeneous nucleation can also be an important source of particles in the urban atmosphere.  相似文献   

2.
A three-dimensional dispersion model has been implemented over the urban area of Stockholm (35×35 km) to assess the spatial distribution of number concentrations of particles in the diameter range 3–400 nm. Typical number concentrations in the urban background of Stockholm is 10 000 cm−3, while they are three times higher close to a major highway outside the city and seven times higher within a densely trafficked street canyon site in the city center. The model, which includes an aerosol module for calculating the particle number losses due to coagulation and dry deposition, has been run for a 10-day period. Model results compare well with measured data, both in levels and in temporal variability. Coagulation was found to be of little importance in terms of time averaged concentrations, contributing to losses of only a few percent as compared to inert particles, while dry deposition yield particle number losses of up to 25% in certain locations. Episodic losses of up to 10% due to coagulation and 50% due to deposition, are found some kilometers downwind of major roads, rising in connection with low wind speed and suppressed turbulent mixing. Removal due to coagulation and deposition will thus be more significant for the simulation of extreme particle number concentrations during peak episodes.The study shows that dispersion models with proper aerosol dynamics included may be used to assess particle number concentrations in Stockholm, where ultrafine particles principally originate from traffic emissions. Emission factors may be determined from roadside measurements, but ambient temperature must be considered, as it has a strong influence on particle number emissions from vehicles.  相似文献   

3.
From 1 May to 25 May 2001, the BAB II campaign was carried out at the motorway BAB (656) near Heidelberg. Atmospheric concentrations of particulate matter and gases were measured together with the meteorological conditions. This paper is focused on the particulate matter measured upwind and downwind from the motorway at ground level. In order to determine the source contribution from the motorway traffic, it was necessary to measure upwind and downwind simultaneously due to variations in background concentrations. The particle number contribution from the motorway was found to be 35,000 particles cm−3 for particles with diameters close to 20 nm and 5000 particles cm−3 for particles with diameters close to 70 nm. Bimodal size distributions were observed on the downwind side, whereas the upwind side showed unimodal size distributions. For particulate mass, it can be estimated that the contribution from the motorway to the PM1 concentrations is in a range 0.6–1.3 μg m−3 for the chosen measurement sites approximately 60 m from the road at a height of 6 m. The soot measurements showed diurnal variation; however, the upwind downwind difference was not measured. Correlation factors showed good correlation between total particle number and number of particles with diameters below 80 nm, CO and NO. There was no correlation between particle number and PM10, which is due to the observation that particle number was dominated by the 20 nm particles.  相似文献   

4.
Increasing epidemiological evidence has established an association between a host of adverse health effects and exposure to ambient particulate matter (PM) and co-pollutants, especially those emitted from motor vehicles. Although PM and their co-pollutants dispersion profiles near the open freeway have been extensively characterized by means of both experimental measurements and numerical simulations in recent years, such investigations near freeways with roadside barriers have not been well documented in the literature. A few previous studies suggested that the presence of roadside structures, such as noise barriers and vegetation, may impact the decay of pollutant concentrations downwind of the freeway by limiting the initial dispersion of traffic emissions and increasing their vertical mixing due to the upward deflection of airflow. Since the noise barriers are now common roadside features of the freeways, particularly those running through populated urban areas, it is pertinent to investigate the impact of their presence on the particles and co-pollutants concentrations in areas adjacent to busy roadways. This study investigated two highly trafficked freeways (I-710 and I-5) in Southern California, with two sampling sites for each freeway, one with and the other without the roadside noise barriers. Particle size distributions and co-pollutants concentrations were measured in the immediate proximity of freeways and at different distances downwind of the freeways. The results showed the formation of a “concentration deficit” zone in the immediate vicinity of the freeway with the presence of roadside noise barrier, followed by a surge of pollutant concentrations further downwind at 80–100 m away from freeway. The particle and co-pollutants concentrations reach background levels at farther distances of 250–400 m compared to 150–200 m at the sites without roadside noise barriers.  相似文献   

5.
Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16–626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.  相似文献   

6.
A mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cm−3, with additional peak particle number concentrations of up to 400 000 cm−3. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters <50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.  相似文献   

7.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

8.
Trace elements and metals in the ultrafine (<0.18 μm) and accumulation (0.18–2.5 μm) particulate matter (PM) modes were measured during the winter season, next to a busy Southern California freeway with significant (∼20%) diesel traffic. Both ambient and concentrated size-segregated impactor samples were taken in order to collect enough mass for chemical analysis. Data at this location were compared to a site located 1 mile downwind of the freeway, which was reflective of urban background. The most abundant trace elements in the accumulation mode detected by inductively coupled plasma mass spectroscopy (ICPMS) were S (138 ng m−3), Na (129 ng m−3), and Fe (89 ng m−3) while S (35 ng m−3) and Fe (35 ng m−3) were the most abundant in the ultrafine mode. The concentrations of several trace elements, including Mg, Al, and Zn, and in particular Ca, Cu, and Pb, did not uniformly increase with size within fine PM, an indication that various roadway sources exist for these elements. Calculation of crustal enrichment factors for the two sites indicates that the freeway traffic contributed to enriched levels of ultrafine Cu, Ba, P and Fe and possibly Ca. The results of this study show that trace elements constitute a small fraction of PM mass in the nanoparticle size range, but these can and should be characterized due to their likely importance to human health.  相似文献   

9.
Particle measurements were conducted at a road site 15 km north of the city of Gothenburg for 3 weeks in June 2000. The size distribution between 10 and 368 nm was measured continuously by using a differential mobility particle sizer (DMPS) system. PM2.5 was sampled on a daily basis with subsequent elemental analysis using EDXRF-spectroscopy. The road is a straight four-lane road with a speed limit of 90 kph. The road passing the site is flat with no elevations where the vehicles run on a steady workload and with constant speed. The traffic intensity is about 20,000 cars per workday and 13,000 vehicles per day during weekends. The diesel fuel used in Sweden is low in sulphur content (<10 ppm) and therefore the diesel vehicles passing the site contribute less to particle emissions in comparison with other studies. A correlation between PM2.5 and accumulation mode particles (100–368 nm) was observed. However, no significant correlation was found between number concentrations of ultrafine particles (10–100 nm) and PM2.5 or the accumulation mode number concentration. The particle distribution between 10 and 368 nm showed great dependency on wind speed and wind direction, where the wind speed was the dominant factor for ultrafine (10–100 nm) particle concentrations. The difference in traffic intensity between workday and weekend together with wind data made it possible to single out the traffic contribution to particle emissions and measure the size distribution. The results presented in combination with previous studies show that both PM2.5 and the mass of accumulation mode particles are bad estimates for ultrafine particles.  相似文献   

10.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

11.
Motor vehicle (MV) emissions and ambient particle concentrations under a variety of situations were studied in Toronto and Vancouver, Canada. Petroleum biomarkers (i.e., hopanes and steranes) were used to determine the fraction of fine particle organic carbon (OC) attributed to primary particles in MV exhaust. Source profiles obtained from a tunnel and from direct tailpipe emissions were applied to ambient measurements at locations ranging from rush hour traffic to a regional background site. The greatest amount of MV OC, 4.0 μgC m−3 out of 9.1 μgC m−3 or 43%, was observed 75 m south of a commuter highway during a period that included morning rush hour. Monthly estimates of MV-OC were determined for a downtown Toronto monitoring site for 2 years. Total OC concentrations were greater in the summer, due to secondary OC, but the amount of MV-OC did not exhibit a strong seasonal pattern. However, on a per cent basis, MV contributions from primary OC emissions were greatest in the winter (15–20%) and smallest in the summer (10–15%) with a two-year average of 14% of the OC or about 5% of the PM2.5.  相似文献   

12.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

13.
Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×103 cm−3 and on weekends (5.9±0.2)×103 cm−3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×104 and 9.6×104 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration.  相似文献   

14.
Particle size distribution is important for understanding the sources and effects of atmospheric aerosols. In this paper we present particle number size distributions (10 nm–10 μm) measured at a suburban site in the fast developing Yangtze River Delta (YRD) region (near Shanghai) in summer 2005. The average number concentrations of ultrafine (10–100 nm) particles were 2–3 times higher than those reported in the urban areas of North America and Europe. The number fraction of the ultrafine particles to total particle count was also 20–30% higher. The sharp increases in ultrafine particle number concentrations were frequently observed in late morning, and the particle bursts on 5 of the 12 nucleation event days can be attributed to the homogeneous nucleation leading to new particle formation. The new particle formation events were characterized with a larger number of nucleation-mode particles, larger particle surface area, and larger condensational sink than usually reported in the literature. These suggest an intense production of sulfuric acid from photo-oxidation of sulfur dioxide in the YRD. Overall, the growth rate of newly formed particles was moderate (6.4 ± 1.6 nm h?1), which was comparable to that reported in the literature.  相似文献   

15.
Size distribution of particle number concentrations in the geometric equivalent diameter range 0.01–2.5 μm were determined in three communities, Zerbst, Bitterfeld and Hettstedt of the state of Sachsen-Anhalt in Eastern Germany, in the first half of 1993 and 1999. A Mobile Aerosol Spectrometer (MAS) consisting of a differential mobility particle spectrometer (DMPS) and a laser aerosol spectrometer (LAS-X) were used for size-selective particle number concentration measurements from which mass concentrations were derived based on an apparent mean density of the ambient aerosol of the closely situated city of Erfurt.The total number concentration was governed by ultra-fine particles (<0.1 μm) (81% in 1993 and 90% in 1999) and 0.1–0.5 μm size fraction dominates total mass concentration (approximately 80%). While the mass concentration of fine particles (PM2.5) decreased from 39 to 19 μg m−3, the geometric means of total number concentration showed constant concentration (13.3×103 cm−3 in 1993 and 13.3×103 cm−3 in 1999, p=0.975) and the geometric means of number concentration of ultra-fine particles (UP) between 10 and 30 nm increased from 5.9×103 to 8.2×103 cm−3 from 1993 to 1999 (p=0.016). The temporal changes of number and mass concentrations in the three communities are similar. The clear shift to smaller particle sizes within this six years period was caused by changes of the most prominent sources, traffic and domestic heating, since formerly dominating industries in Bitterfeld and Hettstedt had vanished grossly.  相似文献   

16.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

17.
Overnight aging experiments with diesel engine exhaust from a diesel power aggregate, with no or 9 kW load, and from a diesel-fueled vehicle were conducted in an environmental chamber. During a 24 h aging period the volatilities of monodisperse particles at 140, 250 and 360 °C heater temperatures were analyzed with volatility tandem differential mobility analysis (VTDMA). The particulate organic to total carbon ratio and organic carbon subfractions at 120, 250, 450 and 550 °C were analyzed with thermal-optical carbon analysis for samples from fresh, 8 or 18 h aged and 24 h aged aerosol. During the experiment also the particle size distribution, ozone and nitrogen oxide concentration, and temperature, relative humidity and total solar and total ultraviolet radiation in the chamber were monitored.After injection, the geometric mean diameter and number concentration of the particles in the chamber were 66–85 nm and 0.9–4.6×105 cm−3, respectively. The particles were seen to grow fast, at a growth rate of 18–47 nm h−1 during the first hour. The fresh particles from the diesel power aggregate contained 37–45% of apparent volume semi-volatile compounds with no load and 10–24% with 9 kW load. The semi-volatile apparent volume fraction at 360 °C for 50 nm particles produced by the diesel power aggregate was 57%. After 24 h of aging, the semi-volatile apparent volume fraction at 360 °C for 100 nm particles was 99%. This suggests that the particles in the 24 h aged aerosol at this size class are no more primary particles but particles that are formed in the chamber through nucleation and subsequent growth.  相似文献   

18.
The previously developed theoretical model [Gao, Y., Chen, S.B., Yu, L.E., 2006. Efflorescence relative humidity for ammonium sulfate particles. Journal of Physical Chemistry A, 110, 7602–7608], which has successfully predicted the efflorescence relative humidity (ERH) of ammonium sulfate ((NH4)2SO4) particles at room temperature, is employed to estimate the ERH of sodium chloride (NaCl) particles in sizes ranging from 6 nm to 20 μm. The theoretical predictions well agree with the reported experimental data in literatures. When the NaCl particles are larger than 70 nm, the ERH decreases with decreasing dry particle sizes, and reach a minimum around 44% RH, otherwise the ERH increases with decreasing dry particle sizes (<70 nm) because of the Kelvin effect. Compared with (NH4)2SO4 particles, the Kelvin effect on ERH is stronger for NaCl particles smaller than 30 nm, while the dry particle size exerts weaker influence on NaCl particles larger than 70 nm.  相似文献   

19.
The purpose of this study was to characterize the emissions of a large number of chemical compounds emitted from birch wood combustion in a wood stove. Birch wood is widely used as fuel in Swedish household appliances. The fuel load was held constant during six experiments.Particles <2.5 μm in diameter were collected and the size distribution of the particles was measured. The results were compared to the size distribution in road traffic emissions. It could be seen that the number distribution differed between the sources. In traffic exhaust, the number of particles maximized at 20 nm, while the number distribution from wood burning ranged from 20 to 300 nm. The ratio K/Ca on particles was found to be significantly different in wood burning compared to road dust, range 30–330 for the former and 0.8±0.15 for the latter. The source profile of common elements emitted from wood burning differed from that found on particles at a street-level site or in long-distance transported particles.The ratio toluene/benzene in this study was found to be in the range 0.2–0.7, which is much lower than the ratio 3.6±0.5 in traffic exhaust emissions.Formaldehyde and acetone were the most abundant compounds among the volatile ketones and aldehydes. The emission factor varied between 180–710 mg/kg wood for formaldehyde and 5–1300 mg/kg wood for acetone. Of the organic acids analyzed (3,4,5)-trimethoxy benzoic acid was the most abundant compound. Of the PAHs reported, fluorene, phenanthrene, anthracene, fluoranthene and pyrene contribute to more than 70% of the mass of PAH. Of the elements analyzed, K and Si were the most abundant elements, having emission factors of 27 and 9 mg/kg wood, respectively.Although fluoranthene has a toxic equivalence factor of 5% of benzo(a)pyrene (B(a)P), it can be seen that the toxic potency of fluoranthene in wood burning emissions is of the same size as B(a)P. This indicates that the relative carcinogenic potency contribution of fluoranthene in wood smoke would be about 40% of B(a)P.  相似文献   

20.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号