首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was investigated at four locations, namely at Yuancun, Wushan, Haizhu and Changban in Guangzhou City, Guangdong Province. The annual deposition fluxes of tetra- to octa-CDD/Fs (total PCDD/Fs) were found to range from 170 to 3000 (mean 1500) pg m−2 day−1, and the fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners ranged from 2.1 to 41 (mean 20) pg WHO-TEQ m−2 day−1 at Wushan. The average deposition fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners in rainy season were found to be 37, 27 and 28 pg WHO-TEQ m−2 day−1 at Yuancun, Haizhu and Changban, respectively, and the PCDD/F deposition fluxes behaved obviously higher in rainy season than in dry season. Results from regression analysis showed that number of rainy days, the amount of wet precipitation, PCDD/F concentrations in particles and organic carbon content played important roles in the variation of PCDD/F deposition fluxes. Monthly average temperatures change little over the year. Therefore, it only played a minor role in monthly variation of PCDD/F deposition fluxes. Particle deposition fluxes were generally not considered as the factor that could cause the differences in PCDD/F deposition fluxes between rainy and dry season, but were found to be related with PCDD/F deposition fluxes in rainy season or dry season. It was found that the profiles of PCDD/F homologs or congeners in the samples were the same either spatially or temporally, indicating that the PCDD/F emission sources were similar to one another. The similarities in PCDD/F homolog patterns and the differences in deposition fluxes between samples collected from heavy-traffic roadside and nearby residence house roof indicated that vehicle exhaust might be an important source for PCDD/F in Guangzhou. PCDD/F concentrations and profiles of PCDD/F homologs in atmospheric deposition were compared with those in both total suspended particles in air and soils, and conclusions indicated that atmospheric deposition possibly tended to remove lower-chlorinated DD/Fs from air and was one of sources for PCDD/Fs in soils.  相似文献   

2.
Most polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the atmosphere are bound to particles which are suspended in the atmosphere, and eventually settle on soil, vegetation, water bodies or other receptors in the environment. Monitoring atmospheric deposition fluxes (dry/wet) is important in tracing the environmental fate and behavior of PCDD/Fs. PCDD/F depositions were collected via an automated PCDD/F ambient sampler and traditional cylindrical vessels, respectively, from April 2007 to February 2008. The automated PCDD/F ambient sampler used in this study can prevent both re-suspension and photo degradation of the PCDD/Fs collected and effectively separates the PCDD/F samples into dry and wet contributions. The results indicated that the ambient PCDD/F concentrations collected using the PS-1 sampler ranged from 0.02 pg I-TEQ/m3 to 0.16 pg I-TEQ/m3 in Northern Taiwan. The results also indicated that the PCDD/F deposition flux collected using the automated PCDD/F sampler (17.5 pg I-TEQ/m2 d to 25.8 pg I-TEQ/m2 d) was significantly higher than that sampled with the cylindrical vessels (2.0 pg I-TEQ/m2 d to 9.9 pg I-TEQ/m2 d). The difference was attributed to the fact that part of the PCDD/F depositions collected using the traditional cylindrical vessels had undergone photo degradation and evaporation. In addition, the wet deposition flux of PCDD/Fs (39.4 pg I-TEQ/m2 rainy day to 228 pg I-TEQ/m2 rainy day) observed in this study was significantly higher than the dry deposition flux (12.3 pg I-TEQ/m2 sunny day to 16.7 pg I-TEQ/m2 sunny day). These results demonstrated that wet deposition is the major PCDD/F removal mechanism in the atmosphere.  相似文献   

3.
Estimates of the atmospheric deposition to Galveston Bay of polycyclic aromatic hydrocarbons (PAHs) are made using precipitation and meteorological data that were collected continuously from 2 February 1995 to 6 August 1996 at Seabrook, TX, USA. Particulate and vapor phase PAHs in ambient air and particulate and dissolved phases in rain samples were collected and analyzed. More than 95% of atmospheric PAHs were in the vapor phase and about 73% of PAHs in the rain were in the dissolved phase. Phenanthrene and napthalene were the dominant compounds in air vapor and rain dissolved phases, respectively, while 5 and 6 ring PAH were predominant in the particulate phase of both air and rain samples. Total PAH concentrations ranged from 4 to 161 ng m−3 in air samples and from 50 to 312 ng l−1 in rain samples. Temporal variability in total PAH air concentrations were observed, with lower concentrations in the spring and fall (4–34 ng m −3) compared to the summer and winter (37–161 ng m−3). PAHs in the air near Galveston Bay are derived from both combustion and petroleum vaporization. Gas exchange from the atmosphere to the surface water is estimated to be the major deposition process for PAHs (1211 μg m− 2 yr− 1), relative to wet deposition (130 μg m−2 yr− 1) and dry deposition (99 μg m−2 yr− 1). Annual deposition of PAHs directly to Galveston Bay from the atmosphere is estimated as 2  t yr−1.  相似文献   

4.
Atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in southeastern Korea during the spring of 2002. During this period, severe Asian dust events (ADs) occurred throughout Korea. Total suspended particulates (TSP) of ADs (456.8 μg m−3) increased approximately 3.6-fold compared with non-Asian dust events (NADs; 128.5 μg m−3). However, the concentrations of PCDD/Fs (average concentration, 3.34 pg m−3) did not increase as much as TSP; there was not a significant difference in the concentrations of particle-bound PCDD/Fs collected between ADs (2.45 pg m−3) and NADs (2.05 pg m−3). Meanwhile, according to TSP levels, the concentrations during NADs were 2.8-fold higher than ADs (16.73 and 5.98 ng g−1-TSP, respectively). High TSP levels during sand storms without an increase in PCDD/Fs reflected an increase in coarse and accumulation mode particles. Gas/particle partitioning studies revealed the additional inputs of particulate matters to the air during ADs which did not relate with the increase of PCDD/Fs. Furthermore, emissions from ADs may consist of relatively complex atmospheric particles; back trajectories showed air masses moving at low altitudes over Korea, but there were no differences in PCDD/Fs or atmospheric pollutants regardless of air movements. The study area, which is located in southeastern Korea, might be affected by both marine and regional anthropogenic sources, which do not appear to cause clear differences in PCDD/F concentrations or congener profiles between different air trajectories.  相似文献   

5.
We present measurements of ammonia (NH3) over a deciduous forest in southern Indiana collected during four field campaigns; two in the spring during the transition to leaf-out and two during the winter. Above canopy NH3 concentrations measured continuously using two Wet Effluent Diffusion Denuders indicate mean concentrations of 0.6–1.2 μg m−3 during the spring and 0.3 μg m−3 during the winter. Measurements suggest that on average the forest act as a sink of NH3, with a representative daily deposition flux of 1.8 mg-NH3 m−2 during the spring. However, on some days during the spring inverted concentration gradients of NH3 were observed resulting in an apparent upward flux of nearly 0.2 mg-NH3 m−2 h−1. Analyses suggest that this apparent emission flux may be due to canopy emission but evaporation of ammonium nitrate particles may also be partly responsible for the observed inverted concentration gradients.  相似文献   

6.
Atmospheric tricresyl phosphate (TCP) isomers in Kurose river basin were determined. The concentrations of o-TCP and m-TCP were 0.13 and 0.09 ng m−3, respectively, while p-TCP was scarcely detected. Exhaust gases from motorcycles and automobiles were main sources for TCP isomers in the atmosphere. Exhaust gas from incinerator also contributes to atmospheric concentration of TCP isomers. Most of the TCP isomers could be estimated to be sorbed to particles, due to their low vapor pressures. The concentrations of TCP isomers were relatively high in soils collected from an open storage yard of waste PVC and near the highway and greenhouse of agricultural film. On the other hand, the concentrations were negligibly small in soil collected from the forest except for the silt-clay fraction in the soil. Dry deposition fluxes of o-TCP and m-TCP from the atmosphere was 0.2 and 0.04 μg m−2 d−1, respectively. Wet deposition flux of TCP isomers during one rainfall exceeded occasionally the dry deposition flux for two weeks. TCP isomers accumulated in soil were discharged into river by precipitation event. Their concentrations increased with an increase in river flow, characteristic of a non-point source of TCP isomers.  相似文献   

7.
Potassium carbonate sulfation plates, monitored monthly for 11 years from 48 sites in 11 cities in Gansu Province, China, provide a crude estimate of cumulative SO2 dry depositions. Measured SO2 dry deposition rates were 1.6–472 mg m−2 day−1 and had seasonal variations with maxima in winter and minima mainly during summer as a result of higher winter and lower summer SO2 concentrations. The 11-year monthly average SO2 dry deposition rates are 23.2–248.97 and 11.7–175.6 mg m−2 day−1 in the eleven cities in winter and summer, respectively. A monthly average SO2 deposition velocity was also estimated from 0.06 to 9.72 cm s−2 in the 11 cities studied with a 11-year average maximum value of about 1.1–2.7 cm s−2 in April and July and a 11-year average minimum value of about 0.2–1.0 cm s−1 in January. The SO2 dry deposition velocity also exhibits an increasing with wind speed in basins of less than 500 mm annual precipitation. In contrast, due to influences of the relative humidity in valleys of more than 500 mm annual precipitation, it shows a decreasing trend with wind speed increasing.  相似文献   

8.
《Chemosphere》2007,66(11):2477-2484
Atmospheric Hg transfer to the forest soil through litterfall was investigated in a primary rainforest at Ilha Grande (Southeast Brazil) from January to December 1997. Litter mass deposition reached 10.0 t ha−1 y−1, with leaves composing 50–84% of the total litter mass. Concentrations of Hg in the total fallen litter varied from 20 to 244 ng g−1, with higher concentrations during the dry season, between June and August (225 ± 17 ng g−1), and lower concentrations during the rainy season (99 ± 54 ng g−1). This seasonal variability was reflected in the Hg flux through litterfall, which corresponded to a Hg input to the forest floor of 122 μg m−2 y−1, with average Hg deposition of 16.5 ± 1.5 μg m−2 month−1 during and just after the dry season (June–September) and 7.0 ± 3.6 μg m−2 month−1 in the rest of the year. The variability in meteorological conditions (determining atmospheric Hg availability to foliar scavenging) may explain the pulsed pattern of Hg deposition, since litterfall temporal variability was generally unrelated with such deposition, except by a peak in litterfall production in September. Comparisons with regional data on Hg atmospheric deposition show that litterfall promotes Hg deposition at Ilha Grande two to three orders of magnitude higher than open rainfall deposition in non-industrialized areas and approximately two times higher than open rainfall deposition in industrialized areas in Rio de Janeiro State. The observed input suggests that atmospheric Hg transfer through litterfall may explain a larger fraction of the total Hg input to forest soils in Southeast Brazil than those recorded at higher latitudes.  相似文献   

9.
《Chemosphere》2013,90(11):1287-1294
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra–octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono–nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3–4 orders of magnitude greater than modern diesel engines.  相似文献   

10.
To investigate the characteristics of mercury exchange between soil and air in the heavily air-polluted area, total gaseous mercury (TGM) concentration in air and Hg exchange flux were measured in Wanshan Hg mining area (WMMA) in November, 2002 and July–August, 2004. The results showed that the average TGM concentrations in the ambient air (17.8–1101.8 ng m−3), average Hg emission flux (162–27827 ng m−2 h−1) and average Hg dry deposition flux (0–9434 ng m−2 h−1) in WMMA were 1–4 orders of magnitude higher than those in the background area. It is said that mercury-enriched soil is a significant Hg source of the atmosphere in WMMA. It was also found that widely distributed roasted cinnabar banks are net Hg sources of the atmosphere in WMMA. Relationships between mercury exchange flux and environmental parameters were investigated. The results indicated that the rate of mercury emission from soil could be accelerated by high total soil mercury concentration and solar irradiation. Whereas, highly elevated TGM concentrations in the ambient air can restrain Hg emission from soil and even lead to strongly atmospheric Hg deposition to soil surface. A great amount of gaseous mercury in the heavily polluted atmosphere may cycle between soil and air quickly and locally. Vegetation can inhibit mercury emission from soil and are important sinks of atmospheric mercury in heavily air-polluted area.  相似文献   

11.
PM2.5 aerosols were collected in Nanjing, a typical mega-city in China, during summer and winter 2004 and were characterized for aromatic and cyclic compounds using a GC/MS technique to understand the air pollution problem. They include polycyclic aromatic hydrocarbons (PAHs), hopanes, phthalates and hydroxy-PAHs (OH-PAHs). PAHs, hopanes and OH-PAHs presented higher concentrations in winter (26–178, 3.0–18, and 0.013–0.421 ng m−3, respectively) than in summer (12–96, 1.6–11, and 0.029–0.171 ng m−3, respectively) due to an enhanced coal burning for house heating and atmospheric inversion layers developed in the cold season. In contrast, phthalates are more abundant in summer (109–368 ng m−3, average 230 ng m−3) than in winter (33–390 ng m−3, average 170 ng m−3) due to an enhanced evaporation from plastics during the hot season and the subsequent deposition on the pre-existing particles. Generally, all the identified compounds showed higher concentrations in nighttime than in daytime due to inversion layers and increased emissions from heavy-duty trucks at night. PAHs, hopanes and phthalates in Nanjing aerosols are 5–100 times more abundant than those in Los Angeles, USA, indicating a serious air pollution problem in the city. Concentrations of OH-PAHs are 1–3 orders of magnitude less than their parent PAHs and comparable to those reported from other international cities. Source identification using diagnostic ratios of the organic tracers suggests that PAHs in Nanjing urban area are mainly derived from coal burning, whereas hopanes are more attributable to traffic emissions.  相似文献   

12.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

13.
The possible enhancement of aerosol deposition at forest edges was investigated in a wind tunnel and in the field. The wind tunnel study was carried out using 0.82 μm mass median aerodynamic diameter uranium particles and a composite canopy of rye grass and spruce saplings. The field study was undertaken at a coniferous woodland near to BNFL Sellafield, Cumbria, UK. Two transects were set through the woodland to determine the influence of the forest edge on atmospheric deposition of radionuclides released under authorisation from the Sellafield site. Results from the wind tunnel study showed that the deposition flux of uranium particles decreased with distance downwind from the grass–tree edge towards the interior of the canopy. The deposition flux at the edge was maximal at about 4×10−7 μg of U cm−2 s−1. This was 3 times higher than that observed over grass where a constant flux of about 1.32×10−7 μg of U cm−2 s−1 occurred. Results from the field study showed a clear influence of the forest edge on the atmospheric deposition of 241Am and 137Cs. Activity depositions of around 4750 and 230 Bqm−2 for 137Cs and 241Am, respectively, were measured in front of the woodland. Activity deposition inside the forest edge, however, rose to levels of between 20,200 and 50,900 Bq m−2 and 1100 and 3200 Bq m−2 for 137Cs and 241Am, respectively, depending upon the transect. Similar activity concentrations were measured in the pasture to the front and behind Lady Wood. Results from these studies corroborate those obtained from various studies on air pollutants including radionuclides. This underlines the importance of deposition at the edge of forests and its contribution to the overall canopy deposition. The edge effect is therefore an important factor that should be considered in the assessment of fallout impact, whether this is to be made by either direct sampling or by modelling.  相似文献   

14.
The aerosol scattering properties were investigated at two continental sites in northern China in 2004. Aerosol light scattering coefficient (σsp) at 525 nm, PM10, and aerosol mass scattering efficiencies (α) at Dunhuang had a mean value of 165.1±148.8 M m−1, 157.6±270.0 μg m−3, and 2.30±3.41 m2 g−1, respectively, while these values at Dongsheng were, respectively, 180.2±151.9 M m−1, 119.0±112.9 μg m−3, and 1.87±1.41 m2 g−1. There existed a seasonal variability of aerosol scattering properties. In spring, at Dunhuang PM10, σsp, and α were 184.1±211.548 μg m−3, 126.3±89.6 M m−1, and 1.05±0.97 m2 g−1, respectively, and these values at Dongsheng were 146.4±142.1 μg m−3, 183.4±81.7 M m−1, and 1.98±1.52 m2 g−1, respectively. However, in winter at Dunhuang PM10, σsp, and α were 158.1±261.4 μg m−3, 303.3±165.2 M m−1, and 3.17±1.93 m2 g−1, respectively, and these values at Dongsheng were 155.7±170.1 μg m−3, 304.4±158.1 M m−1, and 2.90±1.72 m2 g−1, respectively. σsp and α in winter were higher than that in spring at both the sites, which coincides with the characteristics of dust aerosol and pollution aerosol. Overall, the dominant aerosol types in spring and winter at both sites in northern China are dust aerosol and pollution aerosol, respectively.  相似文献   

15.
Carbonyl compounds exist in the atmosphere as either gases or aerosols. Some of them are water soluble and known as oxidation products of biogenic and/or anthropogenic hydrocarbons. Five carbonyl compounds, glyoxal (GO), 4-oxopentanal (4-OPA), glycolaldehyde (GA), hydroxyacetone (HA) and methylglyoxal (MG) have been identified in a temporal series of 12 rain samples. The concentrations of the compounds in the samples were high at the beginning of the rain event and decreased with time to relatively low and fairly constant levels, indicating that the compounds were washed out from the atmosphere at the start of the rain event. Possibly, these compounds also existed in the cloud condensation nuclei (CCN). Wet deposition rates of the carbonyl compounds were calculated for nine samples collected during a 20 h period. The deposition rates ranged from 0 (4-OPA) to 1.2×10−1 mg C m−2 h−1 (MG) with the average of 2.9×10−2 mg C m−2 h−1. Production rates of isoprene oxidation products (GA, HA and MG) in the area surrounding the sampling site were estimated with a chemical box model. The deposition rates exceeded the production rates in most samples. This indicates that the rainfall causes a large net flux of the water soluble compounds from the atmosphere to the ground. Insoluble carbonyl compounds such as n-nonanal and n-decanal were expected to be present in the atmosphere, but were not detected in the rain during the sampling period, suggesting that an aerosol containing these insoluble compounds does not effectively act as a CCN.  相似文献   

16.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

17.
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200–350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm−3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t−1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41–3700 μg ITEQ t−1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91–414 μg kg−1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018–0.5 μg Nm−3) were below the Italian limit of 10 μg Nm−3.  相似文献   

18.
Atmospheric monitoring of PCBs and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB (tPCB) concentrations in air ranged from 0.21 to 4.78 ng m−3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34 ng l−1, with tetra-chlorinated PCBs predominating. The predominant isomers found in air and rain were α- and γ-HCH, α- and γ-chlordanes, 4,4′-DDT, and dieldrin. The concentrations of PCBs and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of PCBs in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of HCHs were elevated in April, May, and October, perhaps due to local and/or regional applications of γ-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of PCBs to Galveston Bay (6.40 μg m−2 yr−1) was significantly higher than that of pesticides by a factor of 5–10. The net flux from gas exchange estimated for PCBs was from Galveston Bay water to the atmosphere (78 μg m−2 yr−1). Gas exchange of PCBs from bay water to the atmosphere was the dominant flux.  相似文献   

19.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

20.
Dry deposition modelling typically assumes that canopy resistance (Rc) is independent of ammonia (NH3) concentration. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to a moorland composed of a mixture of Calluna vulgaris (L.) Hull, Eriophorum vaginatum L. and Sphagnum spp. Ammonia was applied at a wide range of concentrations (1–100 μg m−3). The physical and environmental properties and the testing of the chamber are described, as well as results for the moorland vegetation using the ‘canopy resistance’ and ‘canopy compensation point’ interpretations of the data.Results for moorland plant species demonstrate that NH3 concentration directly affects the rate of NH3 deposition to the vegetation canopy, with Rc and cuticular resistance (Rw) increasing with increasing NH3 concentrations. Differences in Rc were found between night and day: during the night Rc increases from 17 s m−1 at 10 μg m−3 to 95 s m−1 at 80 μg m−3, whereas during the day Rc increases from 17 s m−1 at 10 μg m−3 to 48 s m−1 at 80 μg m−3. The lower resistance during the day is caused by the stomata being open and available as a deposition route to the plant. Rw increased with increasing NH3 concentrations and was not significantly different between day and night (at 80 μg m−3 NH3 day Rw=88 s m−1 and night Rw=95 s m−1). The results demonstrate that assessments using fixed Rc will over-estimate NH3 deposition at high concentrations (over ∼15 μg m−3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号