首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparisons are presented of the predictions of the atmospheric dispersion modelling system (ADMS) and wind tunnel data for plume dispersion from chemical warehouse fires. The focus of the comparisons is dispersion from structurally intact buildings with open roofs and dispersion of plumes flush with the ground without obstacles, however, dispersion from building shells and doors is also considered. Both buoyancy driven and momentum driven flows are treated, although emphasis is on buoyancy driven flows as these are generally more likely to occur in warehouse fires. The study shows that the ADMS building module is able to reproduce many of the features of dispersion observed in the wind tunnel. These include a recirculating region behind the building in which material may be trapped, a main wake which brings material down towards the surface, and appropriate sensitivity to the buoyancy and momentum of the emitted material, and the location of sources on the building roof. The comparisons suggest that the ADMS building model can be used to predict dispersion from the stages of fire development studied. The precise level of agreement depends (but not in a systematic way) on the buoyancy flux parameter FB, the momentum flux parameter FM and the number of roof lights. There are some significant differences between the wind tunnel boundary layer and the simulated atmospheric boundary layer in ADMS which have to be considered when making wind tunnel model comparisons. These relate mainly to the near surface where the wind tunnel underestimates turbulent velocities, the boundary layer height which in the wind tunnel corresponds to an atmospheric boundary layer depth of 82.5 m (atmospheric boundary layers are frequently an order of magnitude deeper), and the boundary layer top where the ADMS boundary layer is capped by an inversion and has low turbulence levels whereas the wind tunnel boundary layer has higher levels of turbulence and no capping inversion.  相似文献   

2.
A three-dimensional atmospheric model is used for modelling the airflow pattern and internal boundary layer (IBL) development over the Hong Kong region that comprises hilly terrain and complex coastline. Observations used to verify the model are drawn from 32 meteorological stations and a ground-based lidar system. It is found that the modelled results are in good agreement with the observed airflow field and IBL development. Due to the interaction of complex terrain and sea-breeze circulations, several confluence zones of wind fields are found in different locations, depending on the background wind velocity and the differential-heating rate between land and sea. Subsequently, these kinds of wind field patterns give rise to a three-dimensional dome-shaped IBL distribution that forms an impediment to air-pollutant dispersion outside of the layer.  相似文献   

3.
Due to the complexity of the underlying surface, urban boundary layers may exhibit very different wind-temperature field structures compared with rural areas. In this study, an urban boundary layer model with a resolution of 500 m is applied to Hong Kong, a place characterized by complex topography with high mountains and dense urban developments. Five surface land use types are considered; grass and shrub land, trees, water, old urban areas and new town developments. The urban boundary layer model is embedded into the National Center for Atmospheric Research (NCAR) Mesoscale Model, version 5 (MM5). The initial and boundary conditions are obtained from the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis dataset. The modeling approach therefore takes into account both the mesoscale background field and the urban underlying surface. The model is applied to the simulation of a pollution episode in Hong Kong. Results show good agreement with meteorological data for the surface winds and temperature. The model successfully simulates the urban heat island and the occurrence of a sea–land breeze circulation, and their impact on air pollutant transport and dispersion.  相似文献   

4.
The pollutant dispersion in a street canyon has been described in this work by using an isothermal two-dimensional lattice model coupled to the Smagorinsky sub-grid scale model. The influence of the ratio between the height of the upstream and downstream canyon walls, as well as the gap distance between them on the flow pattern, was analyzed considering the situations of ‘open country’ or isolated street canyon and ‘urban roughness’ in which the influence of an urban fabric was considered. The model determined the trajectories of a large number of passive tracer particles released in the computational domain, making it easy to visualize the flow regimes established in each case. The results agreed with the observations reported from the experiments showing a strong influence on the flow inside the canyon exerted by the upstream landscape configuration.  相似文献   

5.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105–8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.  相似文献   

6.
The concept of the urban roughness sublayer is discussed and this lowest atmospheric layer over a rough surface is shown to have a non-negligible vertical extension over typical urban surfaces. The existing knowledge on the turbulence and flow structure within an urban roughness sublayer is reviewed, focusing on the height dependence of turbulent fluxes and a scaling approach for turbulence statistics, such as velocity variances, in the above-roof part of the roughness sublayer. Finally, the implication of this turbulence and flow structure upon dispersion characteristics is investigated. The most prominent difference of explicitly taking into account the roughness sublayer in a dispersion simulation (as compared to assuming a `constant flux layer') is a clearly enhanced ground level concentration far downwind from the source. For the example of a tracer release experiment over a (sub) urban surface (Copenhagen) it is shown that introducing the roughness sublayer clearly improves the model performance.  相似文献   

7.
A summary presentation is made of representative samples from a comprehensive experimental databank on car exhaust dispersion in urban street canyons. Physical modelling, under neutral stratification conditions, was used to provide visualisation, pollutant concentration and velocity measurements above and inside test canyons amidst surrounding urban roughness. The study extended to two different canyon aspects ratios, in combination with different roof configurations on the surrounding buildings. To serve as a reliable basis for validation and testing of urban pollution dispersion codes, special emphasis was placed in this work on data quality assurance.  相似文献   

8.
A tracer technique using certain of the rare earth elements which are easily activated by neutrons has been developed for the analysis of air pollution problems. Studies employing these tracers were made to determine whether the available meteorological dispersion models can be used effectively to describe pollution emissions from selected industries in the vicinity of Albany, Oregon. The Gaussian plume model was found to be satisfactory for the moderately intense turbulence fields which characterize Stability Types B, C, and D, including cases in which the pollution was trapped by an inversion layer aloft. For sources near ground level, however, it was necessary to make allowance for urban influences on plume dispersion. A box model best described the observed dispersal pattern when the upward penetration of the very intense turbulence of Stability Type A was limited by an inversion layer aloft. These meteorological models were applied using a “blind” experimental procedure to predict the emission rates of the effluent from multiple sources of air pollution in the Albany area. It was found that these techniques can be used to predict the rate of emission within a factor of two for multiple sources consisting of three stacks.  相似文献   

9.
A numerical model, Mesoscale Model version 5 (MM5), is used in conjunction with a three-dimensional Eulerian/Lagrangian dispersion model (CAMx4) to model PM10 dispersion for a period of 48 h for the city of Christchurch, New Zealand. In a typical winter, Christchurch usually experiences severe degradation in air quality. The formation of a nocturnal temperature inversion layer during stagnant synoptic conditions, and the emissions of particulate matter (PM10) mainly from solid fuel home heating appliances (the ‘Domestic’ factor) leads to severe smog episodes on about 30 nights each winter. The modelling results from the highest resolution computational grid are compared with observed meteorology and air pollution dispersion for winter 2000, when the Christchurch Air Pollution Study (CAPS2000) was underway. The numerical modelling system is able to simulate surface-layer meteorology and PM10 spatial distribution with a good level of skill, with the Index of Agreement and Pearson's correlation coefficient greater than 0.8 for PM10.  相似文献   

10.
A pollutant dispersion model is developed, allowing fast evaluation of the maximum credible 1-h average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with buoyant plumes in urban or rural areas. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height. The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings, respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the buoyant plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights. The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. It is also suited for regulatory purposes, as it can be used to define the minimum stack size requirements for a given source as a function of the exit gas volume and temperature, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.  相似文献   

11.
Air quality models are currently feasible approaches to prevent air pollution episodes. From one of the first source-oriented modelling approaches for air pollution forecasting (Souto et al., 1994, 1996, 1998), a new decision support system for air quality management, SAGA, was developed to provide support to As Pontes Power Plant (APPP) staff. SAGA can provide air pollution forecasts and manage meteorological and air quality measurements. Power plant decisions are supported by the results of a non-hydrostatic meteorological model (ARPS, Xue et al., 2001) to produce Meteorological Forecasts (MFs), and to be coupled to different Lagrangian dispersion models.  相似文献   

12.
13.
The present research proposes the local urban air quality management plan which combines two different modelling approaches (hybrid model) and possesses an improved predictive ability including the ‘probabilistic exceedances over norms’ and their ‘frequency of occurrences’ and so termed, herein, as episodic-urban air quality management plan (e-UAQMP). The e-UAQMP deals with the consequences of ‘extreme’ concentrations of pollutant, mainly occurring at urban ‘hotspots’ e.g. traffic junctions, intersections and signalized roadways and are also influenced by complexities of traffic generated ‘wake’ effects. The e-UAQMP (based on probabilistic approach), also acts as an efficient preventive measure to predict the ‘probability of exceedances’ so as to prepare a successful policy responses in relation to the protection of urban environment as well as disseminating information to its sensitive ‘receptors’. The e-UAQMP may be tailored to the requirements of the local area for the policy implementation programmes. The importance of such policy-making framework in the context of current air pollution ‘episodes’ in urban environments is discussed. The hybrid model that is based on both deterministic and stochastic based approaches predicting the ‘average’ as well as ‘extreme’ concentration distribution of air pollutants together in form of probability has been used at two air quality control regions (AQCRs) in the Delhi city, India, in formulating and executing the e-UAQMP—first, the income tax office (ITO), one of the busiest signalized traffic intersection and second, the Sirifort, one of the busiest signalized roadways.  相似文献   

14.
The 1995 Kit Fox dense gas field data set consists of 52 trials where short-duration CO2 gas releases were made at ground level over a rough surface during neutral to stable conditions. The experiments were intended to demonstrate the effects on dense gas clouds of relatively large roughnesses typical of industrial process plants. Fast response concentration observations were made by 80 samplers located on four downwind lines (25, 50, 100, and 225 m), including profile observations on three towers on each of the closest three arcs. Detailed meteorological measurements were made on several towers within and outside of the roughness arrays. The data analysis emphasized the variation of maximum concentration with surface roughness, the dependence of cloud advection speed on cloud depth, the variation of the three components of dispersion with ambient turbulence, and the dependence of vertical entrainment rate on ambient friction velocity and cloud Richardson number. The Kit Fox data were used to evaluate a specific dense gas dispersion model (HEGADAS 3+), with emphasis on whether it would be able to account for the increased roughness. The model was able to satisfactorily simulate the observed concentrations, with a mean bias of about 5% and with about 90% of the predictions within a factor of two of the observations.  相似文献   

15.
The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25–65 W m-2, corresponding to relative differences of 20–60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.  相似文献   

16.
Abstract

The main results of an experimental study focusing on the formation and transport of photochemical pollution in the Madrid air basin are presented. This southern European, heavily populated urban area is located on an elevated plateau at a height of 700 m, near a mountain range with maximum heights of around 2,400 m. Daily and seasonal cycles of ozone were documented during a one-year survey at three semi-rural sites located 30 km away from the urban center. Maximum hourly values of up to 140 ppb were measured, and the ozone generated within the urban plume on polluted days (when values exceeded 90 ppb) has been estimated at around 40-50 ppb.A meteorological characterization of these smoggy days pointed out the influence of thermally induced local wind flows on the concentration daily cycles at the measuring sites, denoting a preferred advection of the urban plume. Moreover, during intensive summer field campaigns, the use of meteorological and ozone sondes, as well as an instrumented aircraft, revealed some features about the horizontal and vertical distribution of the polluted air masses, as well as their evolution within the planetary boundary layer. Ozone plumes have been detected up to 100 km away from the city, usually mixed in a layer that reaches a height of 1,000-1,500 m in the afternoon. On some occasions, ozone-enriched layers have been detected as high as 4,000 m during morning hours, suggesting possible tropospheric injection induced by topographydriven flows or convective mesoscale systems that are usually present in the center of the Iberian Peninsula in the summer.  相似文献   

17.
The development of micro-scale meteorological models has progressed in recent years. Some of them are already commercially available. With little hesitation, consulting engineers apply them to complex real-world problems. How accurate are the results? Using the example of urban dispersion models, the paper tries to give a critical assessment of the present ‘state of application’.  相似文献   

18.
Traditionally, transport and dispersion models are offline coupled to meteorological drivers, receiving pre-processed output at regular coupling intervals. However, today meteorological models have reached urban and cloud resolving scales and online models integrating meteorological and dispersion models have been developed. In this study the online coupled model, Enviro-HIRLAM, which can also run in offline mode, was used to compare online and offline representations of meso-scale disturbances. The online model was evaluated using data from the first European Tracer Experiment (ETEX-1) and produced satisfactory results. Meso-scale influences during the simulation pertube the plume during long-range transport, leading to a double peak structure at a specific measurement station. The meso-scale influence was investigated by varying the offline coupling interval which was shown to be important in constraining the influence of meso-scale disturbances on plume structure in coarse resolution.  相似文献   

19.
This paper presents the results of the lidar experiments that have been performed during January 1989 through August 1990 to study the aerosol vertical distributions in the nocturnal atmosphere and their comparison with near-simultaneous aerological soundings for environmental monitoring. During the study period, the aerosol distributions showed significant stratified aerosol layer structures in the lower atmosphere throughout the south-west monsoon season (June-September), while these structures appear to be either erratic or absent during remaining months of the year. In addition, the aerosols present in the lowest air layers up to 200 m are found to contribute significantly (about 40%) to the aerosol loading in the nocturnal boundary layer at the lidar site. The pre-monsoon to winter ratio of mixing depth and ventilation coefficient were found to be 1.11 and 1.62, respectively. Thus the height of the mixed layer (around 350 m) and the associated ventilation coefficients suggest that early winter evenings tend to have higher pollution potential at the experimental site. The results indicate that the lidar technique has the potential to yield good information on the structure of the nocturnal atmosphere which is found to be influenced by the atmospheric stability conditions as revealed by aerological observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号