首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The effects of the stack height and thermal stratification on the transport and diffusion of pollutants are analyzed in a planetary boundary layer in which the fields of mean motion and temperature are horizontally homogeneous, and the Reynolds terms are assumed to be proportional to the vertical gradient of the mean quantities. Time dependent equations of diffusion, motion and thermodynamics are analyzed with appropriate initial and boundary conditions at the surface and the inversion height.Transport and diffusion of pollutants-from a fixed continuous point source located at two different heights in a planetary boundary layer with various thermal stabilities are considered. It is shown that the maximum concentration shifts clockwise (in the northern hemisphere) with increasing height as a consequence of the Coriolis effect, and the pollutants tend to diffuse downward from the source due to the effect of the strong velocity shear near the surface. It is also shown that the surface maximum concentration increases with decreasing thermal stability (increasing eddy diffusivity and inversion height). It is found that as the effective stack height increases by a factor of three, from 100 to 300 m, the surface concentration decreases by a factor of six, and the distance between the surface maximum concentration and the source increases by a factor of three.  相似文献   

4.
5.
The Tropospheric Ozone Pollution Project (TOPP) launched >220 ozonesondes in Houston (July 2004–June 2008) providing examples of pollution transported into, re-circulated within, and exported from the Houston area. Fifty-one launches occurred during the Texas Air Quality Study (TexAQS) II and the summer portion of IONS-06 (INTEX [Intercontinental Transport Experiment] Ozonesonde Network Study). On 11 days during TexAQS II and on 8 other occasions, ozonesondes were launched both at dawn and in the afternoon. Analysis of these “intensive” launch sequences shows that morning residual layer (RL) ozone concentrations ([O3]) explained 60–70% of the variability found in the afternoon mixed layer (ML). Furthermore, maximum RL [O3] is nearly identical to the mean ML [O3] from the previous afternoon (morning minus afternoon = ?1.6 ± 8.4 ppbv). During TexAQS II, mean [O3] below 1.3 km (the mean ML height from ozonesonde data) increased from 37 ± 22 ppbv in the morning to 74 ± 18 ppbv in the afternoon, suggesting an average net local daily O3 production of ~500–900 tons over the metropolitan Houston area.  相似文献   

6.
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone (O3) and aerosol pollutants occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. Flight experiments conducted in July 1981 utilized the airborne UV-DIAL (Ultra-Violet Differential Absorption Lidar) system developed by NASA. This system provides simultaneous range resolved O3 concentration and aerosol backscatter profiles with high spatial resolution. Data were obtained during the afternoon along east-west and south-north intersecting transects over North Carolina in the presence of active, non-precipitating cumulus clouds. Evening transects were obtained in the area indicated by trajectory calculations to be the current position of the air mass sampled earlier in the day. Space-height cross-section analyses for the evening flight show the cloud ‘debris’ as patterns of aerosol and O3 in excess of the ambient free tropospheric background. The O3 excess was approximately the value of the concentration difference between the afternoon mixed layer and free troposphere measured in the afternoon from independent in-situ vertical soundings made by another aircraft.  相似文献   

7.
The diurnal evolution of the average particulate concentration in the atmosphere of the urban area of Jaén (Spain) has been studied for each of the established yearly periods—that of high emission during the autumn and winter months, and that of lower emission covering the remaining months of the year—using the densitometric analysis of the samples obtained with a dust impactor, during 1 yr.An absolute concentration peak has been determined between 6 and 9 a.m. (GMT) and a relative maximum between 6 and 9 p.m., the latter not appearing during the low-emission period.The results have enabled us to establish a clear relationship between the solar radiation and the diurnal evolution of the pollutant concentration.  相似文献   

8.
The predictions of three urban air pollution models with varying degrees of mathematical and computational complexities are compared against the hourly SO2 ground-level concentrations observed on 10 winter nights of the RAPS experiment in St. Louis. The emphasis in this study is on the prediction of urban area source concentrations. Statistics for the paired comparison of predictions of each model with the observations are presented. The RAM and the ATDL model with stable diffusion coefficients overestimated the observed night-time concentrations. The results show that the performance of the ATDL model with near-neutral diffusion coefficients is comparable to the more sophisticated 3-D grid numerical model.  相似文献   

9.
Due to the complexity of the underlying surface, urban boundary layers may exhibit very different wind-temperature field structures compared with rural areas. In this study, an urban boundary layer model with a resolution of 500 m is applied to Hong Kong, a place characterized by complex topography with high mountains and dense urban developments. Five surface land use types are considered; grass and shrub land, trees, water, old urban areas and new town developments. The urban boundary layer model is embedded into the National Center for Atmospheric Research (NCAR) Mesoscale Model, version 5 (MM5). The initial and boundary conditions are obtained from the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis dataset. The modeling approach therefore takes into account both the mesoscale background field and the urban underlying surface. The model is applied to the simulation of a pollution episode in Hong Kong. Results show good agreement with meteorological data for the surface winds and temperature. The model successfully simulates the urban heat island and the occurrence of a sea–land breeze circulation, and their impact on air pollutant transport and dispersion.  相似文献   

10.
The long-term observational data of wind and temperature obtained from a 213-m instrumented tower in a suburban area were analyzed to investigate the seasonal variation of the structure of the atmospheric boundary layer.It was found from the daily variations of wind and temperature and the seasonal variation of the power spectrum of wind that in the summer the atmospheric boundary layer below 200 m is well mixed by convective turbulence, but in the winter the inversion layer near the ground suppresses the turbulent mixing, and the diurnal variation caused by turbulent mixing is confined to below 50–100 m height.Power spectra of wind speed were computed for different seasons of the year. In the summer season there is no significant variation of the shape of the spectrum with height. However, in winter the spectrum varies with height. The spectrum also varies annually and the characteristic of the long period (a few days) spectral peak of wind is related closely to the synoptic weather situation, and this suggests the possibility of a spectrum climatology.  相似文献   

11.
12.
A study of volatile organic sulfur emissions causing urban odors   总被引:2,自引:0,他引:2  
Muezzinoglu A 《Chemosphere》2003,51(4):245-252
Levels of hydrogen sulfide and sulfur containing organic compounds were studied in the air at the deltas of the polluted creeks in the city of Izmir, Turkey in summer 2001. High concentrations of these malodorous compounds were measured in the air samples. Presence of these compounds in the air was connected with the dark appearance and rising gas bubbles in the studied segments of the creeks. These creeks were like open sewers carrying wastewaters from the industry and residential areas into the inner Izmir Bay until September 2001.Within the scope of this study organic sulfur compounds such as methane thiol, ethane thiol, 2-propane thiol, 2-butane thiol, dimethylsulfide, dimethyldisulfide, thiophene, diphenylsulfide and hydrogen sulfide were studied in the air at selected urban sites where odor nuisance was recognized. Flux measurements from polluted surfaces were preferred rather than direct ambient air measurements. Organic sulfur emission fluxes from the creek surfaces were found above the values reported in the literature. Their concentrations and fluxes were higher in June field program. A limited number of measurements of reduced sulfur compound emission concentrations from the wastewater treatment plant equalization tank and the sludge drying beds as well as the landfill soil surface were also included in the study.Concentrations of total organic sulfur compounds and certain individual components such as dimethylsulfide and hydrogen sulfide in emitted gases from river surfaces were correlated with ambient SO(2) concentrations.  相似文献   

13.
This paper describes the Lagrangian aircraft sampling of a unique segment of the Baltimore/Washington urban plume as it was transported along the Northeast Corridor on 14 August 1980. Plume cross-sectional analyses of NOx and O3 at four downwind distances are presented and discussed relative to physical processes and chemical interactions/transformations. The analyses indicated (1) longrange transport of O3, at least to 400 km, along the Northeast Corridor, (2) significant O3, scavenging when the NO2 concentrations exceed 20 ppb and (3) O3 concentrations within the urban plume during the daylight hours increased as much as 100 ppb, while the background concentrations increased only 30 ppb.In addition, the time of the highest 1-h average O3 concentrations at surface monitoring sites beneath the urban plume increased with increasing distances from Baltimore to New York City. Significant surface O3 peaks were observed under cloudy skies downwind of New York City after midnight and are believed to be the result of transport from the corridor region SW of New York City.  相似文献   

14.
Concentrations and turbulent fluxes of accumulation mode particles were measured during the 2004–2005 ‘Canopy and Aerosol Particle Interaction in Toulouse Urban Layer’ project (CAPITOUL) at the top of two intersecting street canyons and in the urban boundary layer (UBL) in Toulouse, France. Particle numbers were strongly affected by boundary layer depth and showed limited sensitivity to local emissions. Differences in the diurnal patterns of particle numbers were observed between the finer fraction (0.3–0.4 μm) and coarser fraction (1.6–2.0 μm) of accumulation mode particles, indicating different processes of formation, evolution and transportation may be dominant. Highest particle numbers were observed in the narrow street canyon which had more limited local emissions and comparatively small particle fluxes. However, the improved ventilation rate in the wider canyon was also associated with the downward mixing of particles into the street canyon from the UBL. The results from this study clearly illustrate the temporal and spatial variability of particle numbers and fluxes in the urban atmosphere.  相似文献   

15.
A receptor model of positive matrix factorization (PMF) was used to identify the emission sources of fine and coarse particulates in Bandung, a city located at about 150 km south-east of Jakarta. Total of 367 samples were collected at urban mixed site, Tegalega area, in Bandung City during wet and dry season in the period of 2001–2007. The samples of fine and coarse particulate matter were collected simultaneously using dichotomous samplers and mini-volume samplers. The Samples from dichotomous Samplers were analyzed for black carbon and elements while samples from mini-volume samplers were analyzed for ions. The species analyzed in this study were Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Pb, Cl?, NO3?, SO42?, and NH4+. The data were then analyzed using PMF to determine the source factors. Different numbers of source factors were found during dry and wet season. During dry season, the main source factors for fine particles were secondary aerosol (NH4)2SO4, electroplating industry, vehicle emission, and biomass burning, while for coarse particles, the dominant source factors were electroplating industry, followed by aged sea salt, volcanic dust, soil dust, and lime dust. During the wet season, the main source factors for fine particulate matter were vehicle emission and secondary aerosol. Other sources detected were biomass burning, lime dust, soil and volcanic dust. While for coarse particulate matter, the main source factors were sulphate-rich industry, followed by lime dust, soil dust, industrial emission and construction dust.  相似文献   

16.
Experiments were conducted during the ALERT 2000 field campaign aimed at understanding the role of air–snow interactions in carbonyl compound chemistry and the associated ozone depletion in the atmospheric boundary layer. Under sunlit conditions, we find that formaldehyde, acetaldehyde and acetone exhibit a significant diel cycle with average ambient air concentrations of 166, 53 and 385 ppt, respectively. A box model of Arctic surface layer chemistry was used to understand the diel behavior of carbonyl compound concentrations at Alert, Nunavut, Canada, with a focus on the chemical and physical processes that affect carbonyl compounds. Results of the study showed that the measured carbonyl compound concentrations can only be simulated when a radiation-dependent snowpack source term (possibly photochemistry) and a temperature-dependent sink (physical uptake on snow grains) of carbonyl compounds were added to the model. We are able to simulate the concentration and amplitude of the observed diel cycle, but not the phase of the cycle. These results help confirm the importance of snowpack chemistry and physical processes with respect to carbonyl compound concentrations in the Arctic surface boundary layer, and reveal weakness in the details of our understanding.  相似文献   

17.
18.
19.
20.
Abstract

Closed lakes located in urban parks act as sinks of organochlorine pesticides (OCPs), which have been used, for decades, as insecticides, herbicides and fungicides. The closed lakes from Bucharest, Romania, are periodically managed to prevent eutrophication and accumulation of pollutants. However, it is not known if these practices reduce or enhance the legacy pollution with OCPs. The aim of this study was to explore the spatial variation of OCPs in closed lakes. The total concentration of OCPs in water and sediments ranged between 0.0176 and 37.1?µg/L, and between 122 to 1,890?ng/g, respectively. The concentrations of OCPs were compared with the consensus-based sediment quality guidelines (SQGs) in order to evaluate the ecological risks of sediments. The highest potential adverse effects were associated with γ-HCH exposure. Periodical draining and dredging of lakes lead to the resuspension of contaminants, increasing pesticide bioavailability and accumulation in sediments. In addition, we observed that fluorescent dissolved organic matter (DOM) might influence the OCPs cycle. The quantity and character of fluorescent DOM can provide further insight into OCPs degradation. Also, this study may help urban planners to determine the state of urban waters and to find the best solution for water management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号