首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 862 毫秒
1.
Even after its being phased out in gasoline in the late 90s, lead (Pb) is still present at relatively high levels in the atmosphere of Beijing, China (0.10–0.18 μg m?3). Its origin is subject to debate as several distinct sources may contribute to the observed pollution levels. This study proposes to constrain the origin(s) of Pb and strontium (Sr) in aerosols, by coupling both Pb and Sr isotope systematics. The characterisation of the main pollution sources (road traffic, smelters, metal refining plants, coal combustion, cement factories, and soil erosion) shows that they can unambiguously be discriminated by the multi-isotope approach (206Pb/204Pb and 87Sr/86Sr). The study of total suspended particulates (TSP) and fine particles (PM2.5) from Beijing and its vicinity indicates that both size fractions are controlled by the same sources. Lead isotopes indicate that metal refining plants are the major source of atmospheric lead, followed by thermal power stations and other coal combustion processes. The role of this latter source is confirmed by the study of strontium isotopes. Occasionally, emissions from cement plants and/or input from soil alteration are isotopically detectable.  相似文献   

2.
Atmospheric aerosols have been collected at four sites around Japan during 2000. From systematically monitoring the major (Na, Mg, Al, K, Ca, and Fe) and trace (Rb and Sr) elements, along with the Sr isotope composition, we have tried to estimate the contribution of long-range-transported Asian dust (“Kosa”) to the atmospheric aerosols.The results are summarized as follows:(1) The concentration of each element in the aerosols increased during the “Kosa” period. The increase was particularly obvious in samples collected on 8 April 2000, when the “Kosa Phenomenon” was observed at all the sampling sites in Japan, 2 days after a very heavy dust storm had occurred in China.(2) The Rb–Sr isotopic diagram shows a two-component mixing relationship: one with a high 87Sr/86Sr ratio and a high 87Rb/86Sr ratio, and the other with a low 87Sr/86Sr ratio and a low 87Rb/86Sr ratio. There is a significant difference between that of the expected end member of the Asian dust and that of the reported Asian loess, which is thought to be the possible source of the components of the “Kosa”, although the lower component is consistent with the local component at Wako.(3) Plots of the 87Sr/86Sr ratio vs the Ca/Al and Sr/Al ratios support a two-component mixing suggested by the Rb–Sr systematics, and they indicate that the contributing continental soil components to the “Kosa” aerosols should be composed of the silicate fraction of Asian loess.(4) The discrepancy in the Rb–Sr systematics between the expected end member and the possible sources may be caused by the dissolution of the Ca-bearing minerals via long-range dust transport, or by a combination of source characteristics and grain size separation.  相似文献   

3.
Cui  Limeng  Wu  Zhuona  Han  Peng  Taira  Yasuyuki  Wang  Huan  Meng  Qinghua  Feng  Zechen  Zhai  Shuguang  Yu  Jun  Zhu  Weijie  Kong  Yuxia  Wang  Hongfang  Zhang  Hong  Bai  Bin  Lou  Yun  Ma  Yongzhong 《Environmental science and pollution research international》2020,27(7):7005-7014

The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 μg/m3, with a median of 133.97 μg/m3. The order for the mean concentrations of heavy metals, known as hazardous air pollutants (HAPs), was as follows: Mn > Pb > As > Cr > Ni > Se > Cd > Co > Sb > Hg > Be; Non-Designated HAPs Metals: Ca > Fe > Mg > Al > K > Na > Zn > P > Ba > Ti > Cu > Sr > B > Sn > I > V > Rb > Ce > Mo > Cs > Th > Ag > U > Pt. The median concentration of As was higher than China air quality standard (6 ng/m3). The gross α and β concentration levels in aerosols were (1.84?±?1.59) mBg/m3 and (1.15?±?0.85) mBg/m3, respectively. The enrichment factor values of Cu, Ba, B, Ce, Tl, Cs, Pb, As, Cd, Sb, Hg, Fe, Zn, Sn, I, Mo, and Ag were higher than 10, which indicated enriched results from anthropogenic sources. Pb, As, and Cd are considered to originate from multiple sources; fireworks released Ba during China spring festival; Fe, Ce, and Cs may come from stable emissions such as industrial gases. The health risks from anthropogenic metals via inhalation, ingestion, and dermal pathway were estimated on the basis of health quotient as well as the results indicated that children faced the higher risk than adults during the research period. For adults, the health risk posed by heavy metals in atmospheric particles was below the acceptable level.

  相似文献   

4.
To better understand the current physical and chemical properties of East Asian aerosols, an intensive observation of atmospheric particles was conducted at Gosan site, Jeju Island, South Korea during 2005 spring. Total suspended particle (TSP) samples were collected using pre-combusted quartz filters and a high-volume air sampler with the time intervals ranging from 3 h to 48 h. The kinds and amount of various organic compounds were measured in the samples using gas chromatography–mass spectrometry. Among the 99 target compounds detected, saccharides (average, 130 ± 14 ng m?3), fatty acids (73 ± 7 ng m?3), alcohols (41 ± 4 ng m?3), n-alkanes (32 ± 3 ng m?3), and phthalates (21 ± 2 ng m?3) were found to be major compound classes with polyols/polyacids, lignin and resin products, PAHs, sterols and aromatic acids being minor. Compared to the previous results reported for 2001 late spring samples, no significant changes were found in the levels of their concentrations and compositions for 4 years, although the economy in East Asia, especially in China, has sharply expanded from 2001 to 2005. During the campaign at Gosan site, we encountered two distinct dust storm episodes with high TSP concentrations. The first dust event occurred on March 28, which was characterized by a predominance of secondary organic aerosols. The second event that occurred on the next day (March 29) was found to be characterized by primary organic aerosols associated with forest fires in Siberia/northeastern China. A significant variation in the molecular compositions, which was found within a day, suggests that the compositions of East Asian aerosols are heterogeneous due to multi-contributions from different source regions together with different pathways of long-range atmospheric transport of particles.  相似文献   

5.
Many kinds of cosmetic products were analyzed to determine gross radioactivity. In this study, gross alpha/beta radioactivity concentrations in 51 cosmetic samples were determined. The examined cosmetic products consist of blusher, eye shadow, lipstick, nail polish, shampoo, hand cream, cellulite cream, baby powder, soap, and toothpaste. The gross alpha–beta activity concentrations were measured with a nuclear spectroscopic system which contains gas-flow proportional counters. The highest gross alpha/beta activity concentrations were found in eye shadow samples of 1.621Bq g?1 for alpha and 6.471Bq g?1 for beta. The total effective doses due to gross radioactivity for skin were calculated. Although the effective dose of eye shadow samples had the highest value, the effective doses due to gross radioactivity concentrations in this study were found to be lower than the radiological limits given by the authorities.  相似文献   

6.
Aerosol samples (TSP and PM10) during each season were collected at a national monitoring point in Shanghai in 2008. Halogens (Br, I) were determined in samples along with sodium (Na) by ICP-MS and ICP-OES after microwave digestion. In this report we focused on the concentration characteristics of halogen elements Br and I and their seasonal distributions. The mean annual concentrations of total Br and I were 24 ng m?3 and 12 ng m?3 for TSP, 21 ng m?3 and 9 ng m?3 for PM10, respectively. Concentrations of Br and I in TSP and PM10 were lowest in summer but an increase occurred in autumn and winter. Water-soluble Br and I accounted for about 32% of the total Br and I in aerosols, and about 68% of Br and I was non soluble which may be non-soluble organic species. These non-soluble organic species are present in aerosols in the possible binding forms as mineral dust, natural organic matter, and adsorption to black carbon or mineral material such as iron oxides. Soluble Br and I in PM10 extracted by a dilute acid solution (HNO3 + H2SO4) increased by 22% and 18%, respectively, compared with water-soluble Br and I. A positive correlation with Na and sea water enrichment factors for Br and I indicated that bromine and iodine in aerosols originated mostly from marine sources in Shanghai.  相似文献   

7.
The TSP, SO4= and Pb levels observed downwind of a large refinery and in the city of Willemstad in Curaçao are presented. The results show that wiht increasing wind speed TSP and SO4= levels increase while Pb levels decrease. On the other hand, at relatively constant wind speeds a good correlation between TSP and Pb was observed.The correlation observed between TSP, SO4= and Pb and the wind speed, the effect of rain on the atmospheric levels observed during the sampling period, the lack of secondary pollutants (e.g. ozone, NO3?) and the composition of the island background air, allow us to conclude that the SO4= measured at the monitoring sites is mainly produced as a primary pollutant in the refinery, the high atmospheric TSP levels are due to refinery emissions (traditional source) and the recirculation of street dust particles (non traditional source) produced by traffic and the predominantly high wind velocity.The implication on air quality and control measures are discussed.  相似文献   

8.
Our recent studies have reported the feasibility of employing the 3-hydoxy fatty acids (3-OH FAs) and ergosterol as biomarkers to determine the loading of the airborne endotoxin from the Gram-negative bacteria and fungal biomass in atmospheric aerosols, respectively [Lee, A.K.Y., Chan, C.K., Fang, K., Lau, A.P.S., 2004. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment 38, 6807–6317; Lau, A.P.S., Lee, A.K.Y., Chan, C.K., Fang, K., 2006. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment 40, 249–259]. These quantified biomarkers do not, however, provide information on their sources. In this study, the year-long dataset of the endotoxin and ergosterol measured in Hong Kong was integrated with the common water-soluble inorganic ions for source identification through the principal component analysis (PCA) and backward air mass trajectory analysis. In the coarse particles (PM2.5–10), the bacterial endotoxin is loaded in the same factor group with Ca2+ and accounted for about 20% of the total variance of the PCA. This implies the crustal origin for the airborne bacterial assemblage. The fungal ergosterol in the coarse particles (PM2.5–10) had by itself loaded in a factor group of 10.8% of the total variance in one of the sampling sites with large area of natural vegetative coverage. This suggests the single entity nature of the fungal spores and their independent emission to the ambient air upon maturation of their vegetative growth. In the fine particles (<PM2.5), the endotoxin and ergosterol associated closely with K+ and accounted for 34–38% of the total variance in the two sites studied. The K+/Na+ ratio is indicative of the possible sources of K+, which in turn, provides information on the sources of the associated endotoxin and ergosterol. High K+/Na+ ratios (>2.0) in the fine particles of the continental air masses imply the microbial source from activities related to biomass burning and industries from the north. The low K+/Na+ ratios (1.2–1.4) in the fine particles of the mixed air masses suggest microbial sources from the local and regional indoor environment through kitchen emissions and the re-suspension of the road dust due to vehicular exhausts.  相似文献   

9.
Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca2+, Cl?, NO3 ?, and SO4 2? were the most abundant ions and Ca2+ alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 ?, SO4 2?, and NH4 +, were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 2? concentration (17.8 μg?m?3) was highest followed by NO3 ?, K+, and Cl? while the Holi samples were strongly enriched with Cl? and K+ which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.  相似文献   

10.
Simultaneous measurements of gaseous species and fine-mode, particulate inorganic components were performed at the University of Seoul, Seoul in Korea. In the simultaneous measurements, a certain level of nitrous acid (HONO) was observed in the gas-phase, indicating possible heterogeneous HONO production on the surface of the ambient aerosols. On the other hand, high particulate nitrite (NO2?) concentrations of 1.41(±2.26) μg/m3 were also measured, which sometimes reached 18.54 μg/m3. In contrast, low HONO-to-NO2 ratios of 0.007(±0.006) were observed in Seoul. This indicates that a significant fraction of HONO is dissolved in atmospheric aerosols. Around the Seoul site, sufficient alkalinity may have been provided to the atmospheric aerosols from the excessive presence of NH3 in the gas-phase. Due to the alkaline particulate conditions (defined in this study as a particle pH >~3.29), the HONO molecules produced at the surface of the atmospheric aerosols appeared to have been converted into particulate nitrite, thereby preventing their further participation in the atmospheric O3/NOy/HOx photochemical cycles. It was estimated that a minimum average of 65% of HONO was captured by alkaline, anthropogenic, urban particles in the Seoul measurements.  相似文献   

11.
Atmospheric phosphorus in the northern part of Lake Taihu, China   总被引:1,自引:0,他引:1  
Luo J  Wang X  Yang H  Yu JZ  Yang L  Qin B 《Chemosphere》2011,84(6):785-791
  相似文献   

12.
Characteristics of atmospheric aerosols in Kyoto, Japan and Seoul, Korea were investigated using particle-induced X-ray emission (PIXE), elemental analysis system (EAS) and ion chromatograph (IC). Atmospheric aerosols were collected into fine and coarse fractions using a two-stage filter pack sampler in Kyoto and Seoul in winter of 1998. PIXE was applied to analyze the middle and heavy elements with atomic number greater than 14 (Si), and EAS was applied to analyze the light elements such as H, C and N. The total mass concentration in Seoul was about two times higher than in Kyoto and the concentration of Ca, Si, and Ti that are mainly originated from soil were remarkably higher in Seoul. During an Asian dust storm event, the concentration of soil components increased dramatically and amounted to about 15 times higher than average concentration. The fine/coarse ratios of NH4+, NO3, and SO42− were extremely high in both sites. The fact that nearly 70% of fine particles in both Kyoto and Seoul consist of the light elements (N, C, and H) suggests the importance of light elements measurement. Good mass closure for fine particles with light element data was achieved.  相似文献   

13.
The present study focuses on the exceptional Saharan dust event that affected most of France in February 2004. Activity levels of various artificial radionuclides (90Sr, 137Cs, uranium, thorium and plutonium isotopes, 241Am) were examined. Activity or isotopic ratios are discussed in the context of atmospheric nuclear weapons tests, among them French tests performed in Sahara in the 1960s. The daily evolution of 137Cs activity levels in the atmosphere was compared to daily PM10 change. A link between airborne 137Cs and PM10, is given. It is estimated that this 2-day event deposited as much 137Cs as would be deposited on average over a 10-month period. The amount of deposited 137Cs and 239+240Pu represents respectively about 0.1 and 1% of the activity already present in the soil. Such Saharan dust events correspond to an extreme type of “feeder” process of artificial radionuclides in the atmosphere. Therefore, they contribute to the long term background level of artificial radionuclides kept at trace levels in the atmosphere.  相似文献   

14.
A sampling campaign of re-suspended road dust samples from 53 sites that could cover basically the entire Beijing, soil samples from the source regions of dust storm in August 2003, and aerosol samples from three representative sites in Beijing from December 2001 to September 2003, was carried out to investigate the characteristics of re-suspended road dust and its impact on the atmospheric environment. Ca, S, Cu, Zn, Ni, Pb, and Cd were far higher than its crustal abundances and Ca2+, SO42−, Cl, K+, Na+, NO3 were major ions in re-suspended road dust. Al, Ti, Sc, Co, and Mg in re-suspended road dust were mainly originated from crustal source, while Cu, Zn, Ni, and Pb were mainly derived from traffic emissions and coal burning, and Fe, Mn, and Cd were mainly from industrial emissions, coal combustion and oil burning. Ca2+ and SO42− mainly came from construction activities, construction materials and secondary gas-particle conversions, Cl and Na+ were derived from industrial wastewater disposal and chemical industrial emissions, and NO3 and K+ were from vehicle emissions, photochemical reactions of NOX, biomass and vegetable burning. The contribution of mineral aerosol from inside Beijing to the total mineral aerosols was ∼30% in spring of 2002, ∼70% in summer of 2002, ∼80% in autumn of 2003, ∼20% in PM10 and ∼50% in PM2.5, in winter of 2002. The pollution levels of the major pollution species, Ca, S, Cu, Zn, Ni, Pb, Fe, Mn, and Cd in re-suspended road dust reached ∼76%, ∼87%, ∼75%, ∼80%, ∼82%, ∼90%, ∼45%, ∼51%, and ∼94%, respectively. Re-suspended road dust from the traffic and construction activities was one of the major sources of pollution aerosols in Beijing.  相似文献   

15.
To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal–optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BCCTO-375 concentration and the reported elemental carbon (EC) concentration measured by the “Speciation Trends Network—National Institute of Occupational Safety and Health” method (ECNIOSH) with BCCTO-375 of 0.054±0.002 g g−1 and ECNIOSH of 0.067±0.008 g g−1. In contrast, there was an average factor of ca. 20 difference between BCCTO-375 and ECNIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BCCTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the ECNIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BCCTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BCCTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BCCTO-375 in Stockholm was 70% and in the background area 88%.  相似文献   

16.
To evaluate today’s trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m3, compared to the 500 ng/m3 guideline level and to the 200 ng/m3 observed value in 1994. The typical urban background TSP values of 1–2, 0.2–1, 4–6, 10–30 and 3–5 ng/m3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.  相似文献   

17.
Abstract

Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a “whole” year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 ~g/m3 and low in summer days at 456 ~g/m3; however, the spatial PM10 average exhibited little variation at a level of approximately 325 ~g/m3, and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

18.
The concentrations of ambient total suspended particulates (TSP) and PM2.5, and the dry depositions at a sample site at Luliao Junior High School (Luliao) in central Taiwan were measured during smog and non-smog days between December 2017 and July 2018. The results are compared to those obtained during non-smog periods in the years 2015–2017. The mean TSP and PM2.5 concentrations and dry deposition flux were 72.41?±?26.40, 41.88?±?23.51?μg/m3, and 797.57?±?731.46?μg/m2 min, respectively, on the smog days. The mean TSP and PM2.5 concentrations and dry deposition flux on the non-smog days were 56.39?±?18.08, 34.81?±?12.59?μg/m3 and 468.93?±?600.57?μg/m2 min, respectively. The mean TSP concentration in the smog period was 28% greater than that in the non-smog period, and the mean PM2.5 concentration was 20% higher. The mean dry deposition flux in the smog period was 70% higher than that in the non-smog period at Luliao. The PM2.5 concentrations exceeded the standards set by the Taiwan EPA (35?μg/m3 daily, and 15?μg/m3 annually). Therefore, the TSP and PM2.5 concentrations and dry deposition must be reduced in central Taiwan on smog days. In addition, atmospheric TSP and PM2.5 concentrations at various sampling sites were compared, and those herein were not higher than those measured in other countries. Finally, apart from the local traffic emissions, during smog periods, the other pollution source originated from the transportation process of traffic pollutants emitted in the northwest side of Taiwan.  相似文献   

19.
Dimethyl sulfide (DMS) and atmospheric aerosols were sampled simultaneously over the Atlantic Ocean in the vicinity of Bermuda using the NOAA King Air research aircraft. Total and fine (50% cutoff at 2 μm diameter) aerosol fractions were sampled using two independent systems. The average nonsea-salt (nss)SO42− concentrations were 1.9 and 1.0 μg m−3 (as SO42−) for the total and the fine fractions in the boundary layer (BL) and 0.53 and 0.27 μg m−3 in the free troposphere (FT). Non-sea-salt SO42− in the two aerosol fractions were highly correlated (r = 0.90), however a smaller percentage (55%) was found in the fine aerosol near Bermuda relative to that (90%) near the North American continent. The BL SO42− concentrations measured in this study were higher than those measured by others at remote marine locations despite the fact that the 7-day air mass back trajectories indicated little or no continental contact at altitudes of 700 mb and below; the trajectories were over subtropical oceanic areas that are expected to be rich in DMS. DMS concentrations were higher near the ocean surface and decreased with increasing altitude within the BL; the average DMS concentration was 0.13 μg m−3. Trace levels of DMS were also measured in the FT (0.01 μg m−3). Computer simultation of the oxidation and removal of DMS in the marine atmosphere suggests that <50% of the SO42− observed could be related to the natural S cycle.  相似文献   

20.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号