首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Keppler F  Biester H 《Chemosphere》2003,52(2):451-453
It is a little known fact that many chlorinated organic compounds occur naturally and that some are also indispensable to life on earth. Here, we show that chlorination of organic compounds during humification processes in peat is widespread in nature. Globally this process has led to the accumulation of approximately 280-1000 million tons of organically bound chlorine in peatlands during the postglacial period.  相似文献   

2.
Emissions from fugitive dust due to erosion of “natural” wind-blown surfaces are an increasingly important part of PM10 (particulate matter with sizes of 10 μm aerodynamic diameter) emission inventories. These inventories are particularly important to State Implementation Plans (SIP), the plan required for each state to file with the Federal government indicating how they will comply with the Federal Clean Air Act (FCAA). However, techniques for determining the fugitive dust contribution to over all PM10 emissions are still in their developmental stages. In the past, the methods have included field monitoring stations, specialized field studies and field wind-tunnel studies. The measurements made in this paper allow for systematic determination of PM10 emission rates through the use of an environmental boundary layer wind tunnel in the laboratory. Near surface steady-state concentration profiles and velocity profiles are obtained in order to use a control volume approach to estimate emission rates. This methodology is applied to soils retrieved from the nation's single largest PM10 source, Owens (dry) Lake in California, to estimate emission rates during active storm periods. The estimated emission rates are comparable to those obtained from field studies and lend to the validity of this method for determining fugitive dust emission rates.  相似文献   

3.
Marine background levels of non-sea-salt- (nss-) SO42− (5.0–9.7 neq m−3), NH4+ (2.1–4.4 neq m−3) and elemental carbon (EC) (40–80 ngC m−3) in aerosol samples were measured over the equatorial and South Pacific during a cruise by the R/V Hakuho-maru from November 2001 to March 2002. High concentrations of nss-SO42− (47–94 neq m−3), NH4+ (35–94 neq m−3) and EC (130–460 ngC m−3) were found in the western North Pacific near the coast of the Asian continent under the influence of the Asian winter monsoon. Particle size distributions of ionic components showed that the equivalent concentrations of nss-SO42− were balanced with those of NH4+ in the size range of 0.06<D<0.22 μm, whereas the concentration ratios of NH4+ to nss-SO42− in the size range of D>0.22 μm were decreased with increase in particle size. We estimated the source contributions of those aerosol components in the marine background air over the equatorial and South Pacific. Biomass burning accounted for the large fraction (80–98% in weight) of EC and the minor fraction (2–4% in weight) of nss-SO42−. Marine biogenic source accounted for several tens percents of NH4+ and nss-SO42−. In the accumulation mode, 70% of particle number existed in the size range of 0.1<D<0.2 μm. In the size rage of 0.06<D<0.22 μm, the dominant aerosol component of (NH4)2SO4 would be mainly derived from the marine biogenic sources.  相似文献   

4.
Sulfur is an extremely motile and vital element in the Earth's biogeochemical environment, one whose active redox chemistry maintains small reservoirs in the atmosphere and biosphere yet large fluxes through both. Essential for life, intimately linked to the climate state, and an important component of air quality, sulfur and its transport and processing in the atmosphere have been the subject of active research for several decades. This review article describes the current state of our understanding of the atmospheric sulfur cycle, focusing on the marine atmospheric boundary layer, with the aim of identifying the largest roots of uncertainty that most inhibit accurate simulation of sulfur cycling in the atmosphere. An overview of the emissions by phytoplankton and shipping, dispersion and entrainment in the marine boundary layer, and chemical processing by aerosols, clouds, and dry deposition is presented. Analysis of 20 contemporary modeling studies suggests that the greatest ambiguity in global sulfur cycling derives from (in descending order) wet deposition of aerosol sulfate, dry deposition of sulfur dioxide to the Earth's surface, and the heterogeneous oxidation of SO2 in aerosols and clouds.  相似文献   

5.
Six years (1998–2003) of measurements of ambient air concentrations of total suspended particulate (TSP) measured at a rural background monitoring station in Tenerife (Canary Islands), the El Río station (ER, 28°08′35″N, 16°39′20″W, 500 m a.s.l.) were studied. African dust outbreaks were objectively identified using a new quantitative tool, called the African Index. This index indicates the percentage of time that an air mass remained over an African region at one of three possible height intervals of the lower troposphere. After identifying these episodes, a study of the background TSP levels at the ER station and of direct and indirect (those which cause vertical deposition of dust) African air mass intrusion impacts was performed. Taking into account both direct and indirect episodes, a total of 322 days of African dust intrusion were objectively identified (a mean of 54 episodes per year) in the period 1998–2003, some of them caused by “transition episodes” or “return African air masses”. A subjective method confirmed that 256 of these days were caused by direct impacts of African dust on the ER station. A mean TSP value of 21.6 μg m−3 was found at the station during this period. All the episodes occurred when the TSP concentration was >28.5 μg m−3. The TSP background (14 μg m−3) can be assumed to be representative of the MBL of the Eastern North Atlantic subtropical region. The highest number of dust gravitational settlement (or indirect) episodes occurs in summer, but the highest contribution of these episodes to the TSP levels is in March with a monthly mean TSP contribution of up to 30.5 μg m−3.  相似文献   

6.
Three Lagrangian experiments were conducted during IGAC's second aerosol characterization experiment (ACE-2) in the area between Portugal, Tenerife and Madeira in June/July 1997. During each Lagrangian experiment, a boundary layer air mass was followed for about 30 h, and the temporal evolution of its chemical and aerosol composition was documented by a series of vertical profiles and horizontal box pattern flown by the Meteorological Research Flight research aircraft Hercules C130. The wealth of observational data that has been collected during these three Lagrangian experiments is the basis for the development and testing of a one-dimensional Lagrangian boundary layer model with coupled gas, aqueous, and aerosol phase chemistry. The focus of this paper is on current model limitations and strengths. We show that the model is able to represent the dynamical and chemical evolution of the marine boundary layer, in some cases requiring adjustments of the subsidence velocity and of the surface heat fluxes. Entrainment of a layer rich in ozone and carbon monoxide from a residual continental boundary layer into the marine boundary layer as well as in-cloud oxidation of sulphur dioxide by hydrogen peroxide are simulated, and coherent results are obtained, concerning the evolution of the small, presumably sulphate–ammonia aerosol mode.  相似文献   

7.
A turbulent energy model developed by the authors to describe atmospheric flows is used to study diffusion in the convective boundary layer. The model is based on the turbulent energy transport equation coupled with eddy diffusivity expressions for momentum and heat transfer. The diffusion model assumes equality of the eddy diffusivity for heat and mass and Gaussian diffusion in the cross-stream direction. The model is shown to reproduce satisfactorily the main features of diffusion in convective flows, and its predictions compare well with the measurements of the laboratory experiments of Willis and Deardorff, as well as with field data.  相似文献   

8.
Reducing airborne dust is an essential process for improving hen housing environment. Dust reduction effects of neutral electrolyzed water (pH 8.2) spray were investigated in a commercial tunnel-ventilated layer breeding house during production in northern China. A multipoint sampler was used to measure airborne dust concentration to study the dust reduction effects and distribution in the house. Compared with the control treatment (without spray), airborne dust level was reduced 34% in the 3 hr after spraying 216 mL m?2 neutral electrolyzed water in the breeding house. The dust concentration was significantly higher during the periods of feed distribution (1.13 ± 0.13 mg m?3) and artificial insemination (0.72 ± 0.13 mg m?3) compared with after spray (0.47 ± 0.09 mg m?3) and during lights-off period (0.29 ± 0.08 mg m?3) in the three consecutive testing days (P < 0.05). The experimental cage area was divided into four zones along the length of the house, with zone 1 nearest to the evaporative cooling pad and zone 4 nearest to the fans. The air temperature, relative humidity, airflow rate, and dust concentration were measured at the sampling points of the four zones in 3 consecutive days and mortality of the birds for the duration of a month were investigated. The results showed that the air temperature, airflow rate, dust concentration, and number of dead birds increase from zone 1 to zone 4 in the tunnel-ventilated layer breeding house.

Implications: It is difficult to effectively reduce hen house airborne dust levels and limited information is available on airborne dust distribution in tunnel-ventilated hen houses. This work investigates (i) the application of neutral electrolyzed water spray for reducing dust in a layer breeding houses; (ii) dust concentration variations in 24-hr house operation; as well as (iii) the effects of location on dust concentrations. It was demonstrated that neutral electrolyzed water spray can be efficiently used for dust reduction in poultry houses. Further, a better understanding of the dust concentration variations in 24-hr house operation and in different spatial zones can contribute to bird housing environment management and poultry house design so as to improve bird health.  相似文献   

9.
The characteristics of the temperature field in the stable atmospheric boundary layer, whilst under the influence of an industrial dry-cooling tower, are described from experimental observations.  相似文献   

10.
A model to estimate the entry length to a fully developed diffusive boundary layer above a sediment bed, such as those found in lakes, reservoirs, rivers, and estuaries, is presented. The model is used to determine how the length of a sediment bed in mass-transfer experiments influences the measured vertical diffusive flux at the sediment-water interface. A nondimensional local mass flux is introduced in the form of a Sherwood number (Sh) and expressed as a function of both the distance from the leading edge of the sediment bed (x) and the Schmidt number (Sc). Similarly, a mean Sherwood number (Sh(ave)) for a sediment bed of length (L) is introduced. The diffusive boundary layer grows with distance, and its thickness depends on the Schmidt number (i.e., the diffusive boundary layer gets thicker and develops more quickly as the Schmidt number decreases). For Schmidt numbers greater than or equal to 100, the diffusive boundary layer begins to develop slowly but is fully developed when the nondimensional horizontal coordinate (x+) is approximately 1000. The Sherwood number is largest (i.e., infinity) near the leading edge of the sediment bed (i.e., at x = 0), decreases as the distance from the bed increases, and, finally, approaches a constant value for a fully developed diffusive boundary layer (Sh(infinity)). In this paper, the distance to a fully developed diffusive boundary layer (L99) and the required length of a sediment bed are related explicitly to Sc, sheer velocity (U*), and the relative errors of local or average Sherwood numbers (Sh or Sh(ave), respectively) against the Sherwood number for the fully developed diffusive boundary layer (Sh(infinity)). The lengths L99 and L decrease as the Schmidt number increases and become independent of the Schmidt number when Sc is greater than 1000. A longer sediment bed is needed when the shear velocity or the Schmidt number is small (e.g., L99 and L approximately 1.0 m and 8.0 m, respectively, for Sc = 500, U* = 0.1 cm/s, and a 3% acceptable error). Experimental studies may not be able to meet these requirements and an adjustment of measured mass-transfer rates at a sediment-water interface may be necessary. The magnitude of that adjustment is up to 50%. Its dependence on the Schmidt number, shear velocity, and bed length is given in this paper.  相似文献   

11.
Bromine chemistry in the marine boundary layer is recognized to play an important role through catalytic ozone destruction, changes to the atmospheric oxidising capacity (by changing the OH/HO2 and NO/NO2 ratio) and oxidation of compounds such as dimethyl sulphide (DMS). However, the chemistry of bromine in polluted environments is not well understood and its effects are thought to be inhibited by reactions involving NOx (NO2 & NO). This paper describes long-path Differential Optical Absorption Spectroscopy (DOAS) observations of bromine oxide (BrO) at a semi-polluted coastal site in Roscoff, France. Significant concentrations of BrO (up to 7.5 ± 1.0 pptv) were measured during daytime, indicating the presence of unknown sources or efficient recycling of reactive bromine from bromine nitrate (BrONO2), which should be the major reservoir for bromine in a high NOx environment. These measurements indicate that bromine chemistry can play an important role in polluted environments.  相似文献   

12.
Diffusion from ground-level sources in the neutral boundary layer is described using a semi-Lagrangian formulation. The eddy diffusivity is assumed to depend on the standard deviation of the concentration profile at each streamwise location. The approach leads to simple analytical expressions for the variation of concentration in terms of flow parameters as the roughness height and the friction velocity, which are in good agreement with experimental results without requiring the use of a turbulent Schmidt number smaller than unity.  相似文献   

13.
Many towns and cities consist of similarly sized buildings in relatively regular arrangements with smaller scale roughness elements such as roofs, chimneys and balconies. The objective of this study is to investigate how small scale roughness elements modify the influence of the large scale organized roughness on the dispersion of a passive scalar in a turbulent boundary layer. Wind tunnel experiments were performed using a passive tracer released from a line source and concentration profiles were measured with a Flame Ionisation Detector. The measurements are compared with numerical solutions of the advection–diffusion equation.The results show that decreasing the cavity aspect ratio increases the turbulent vertical mass fluxes, and that the small scale roughness enhances these fluxes, but only in the skimming flow regime. Numerical simulations showed that outside the roughness sub-layer (RSL) the changes in surface roughness could be accounted for by a simple variation of the friction velocity, but inside the RSL the spatial variability of the flow imposed by the roughness elements has much more influence. A simple model for a spatially averaged dispersion coefficient in the RSL has been developed and is shown to agree satisfactorily with the concentrations measured in these experiments.  相似文献   

14.

Background, aim, and scope  

The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK.  相似文献   

15.
An analytical model for the crosswind integrated concentrations released from a continuous source in a finite atmospheric boundary layer is formulated by considering the wind speed as a power law profile of vertical height above the ground and eddy diffusivity as an explicit function of downwind distance from the source and vertical height. A closed form analytical solution of the resulting advection–diffusion equation for these profiles of wind speed and eddy diffusivity with the physically relevant boundary conditions is derived using the separation of variables technique that leads to a Sturm–Liouville eigen value problem. Various particular cases of the model are deduced.The model is evaluated with the observations obtained from Prairie Grass experiment in various stability classes varying from very unstable to neutral and stable conditions and Hanford diffusion experiment in stable conditions. The agreement is found to be good between the computed and observed concentrations in both the diffusion experiments. For Prairie Grass experiment, the model is predicting 78% cases with in a factor of two and gives a value of NMSE as 0.075. On the other hand, for Hanford observations in stable conditions, it predicts 70% cases with in factor of two. An extensive analysis of statistical measures with the downwind distances from the source reveals that the model is performing well close to the source.  相似文献   

16.
LIDAR observations were conducted in the northern Taklimakan Desert to investigate the vertical distribution of dust in April 2002. During the observation period, a dust outbreak occurred on 13 April, remaining over the desert for several days. Despite only slight variations being observed in dust layer height before the dust event, marked diurnal variation in dust layer height was observed after the dust event. In this study, we conducted two numerical simulations to investigate differences in the variation exhibited by the dust layer heights before and after the dust event, and assessed the influence of meteorological conditions on this variation. The simulated results show that the clearly diurnal variation in dust layer height is strongly influenced by local circulation which is affected by the characteristic topography and synoptic conditions of the Tarim Basin.  相似文献   

17.
Statistical analyses of global atmospheric concentrations provide evidence that C2Cl4, CHCl3 and CH3CCl3 (methylchloroform) are more abundant in the tropical boundary layer than above it (α ? 0.09) by 27% (±27%), 21% (?21%, +12%) and 6.4% (±6%) respectively. The air samples on which these results are based were collected by cryogenic techniques during the June 1978 project GAMETAG flights and analyzed soon afterwards by gas chromatography (EC/GC and GC/FID), thus providing latitudinal concentrations of CO, CH4, CCl3F, CCl2F2, CH3CCl3 and light C2-hydrocarbons, both in and above the boundary layer. In August 1980, after further development of analytical techniques, the stored air samples were re-analyzed to establish the latitudinal distributions of CH3I, CHCl3, C2Cl4, C2F3Cl3 (F-113) and CHClF2 (F-22) in and above the boundary layer. Stability studies, spanning a year, show that the concentrations of these gases do not change in the flasks.  相似文献   

18.
Measurements of nitrogen dioxide, ozone and, for the first time, on-line, nonmethane hydrocarbons with a quasicontinuous gaschromatographic/flame ionization technique were performed on a manned hydrogen-gas balloon platform. A cycle time of 10 min allowed the determination of nonmethane hydrocarbons in the carbon number range of C4-C10 with a detection limit of 10 pptv. In addition, meteorological parameters (atmospheric pressure, temperature, humidity) along with GPS-data (global positioning system) was accomplished during the balloon flights. Balloon measurements of trace compounds provide valuable information about photochemical processes in the boundary layer since gas ballooning offers the only technique that stays in the same air parcel along Langrangian trajectories. In addition, gas ballooning represents a unique tool to elucidate micrometeorological observations such as atmospheric stability oscillations and local wind fields.  相似文献   

19.
Measurements of chemical species and meteorological parameters were made at a site located 440 m above the mean basin level of Mexico City, over a two-week period in November during Project Azteca. Data from three of the stations of Mexico City's air quality monitoring network (Red Automática de Monitoreo Ambiental, RAMA) were also used to estimate the dilution in concentration experienced by pollutants as they are transported upslope during the course of the day. Both carbon monoxide and sulfur dioxide show a dilution of up to 50%, while ozone is usually more concentrated at the elevated site. These comparisons clearly highlight the intrinsic differences between primary and secondary gases, which are supported also by time–space, cross correlation analysis. The thermal mesoscale wind circulation dominates concentrations of pollutants at the research site: upslope during the day and downslope during the night. The data present clear evidence that downslope flows during the night contribute to ozone concentration at basin sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号