共查询到20条相似文献,搜索用时 15 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》1999,33(28):4535-4564
During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are explored. This review also considers the phenomenon that has become known as Sick Building Syndrome (SBS), where the occupants of certain affected buildings repeatedly describe a complex range of vague and often subjective health complaints. These are often attributed to poor air quality. However, many cases of SBS provide a valuable insight into the problems faced by investigators attempting to establish causality. We know much less about the health risks from indoor air pollution than we do about those attributable to the contamination of outdoor air. This imbalance must be redressed by the provision of adequate funding, and the development of a strong commitment to action within both the public and private sectors. It is clear that meeting the challenges and resolving the uncertainties associated with air quality problems in the indoor environment will be a considerable undertaking. 相似文献
2.
Murat Darçın 《Environmental science and pollution research international》2014,21(3):1954-1959
Air quality—or its converse, air pollution—is a significant risk factor for human health. Recent studies have reported association between air pollution and human health. There are numerous diseases that may be caused by air pollution such as respiratory infection, lung cancer, cardiovascular disease, chronic obstructive pulmonary disease, and asthma. In this study, the relationship between air quality and quality of life was examined by using canonical correlation analysis. Data of this study was collected from 27 countries. WHO statistics were used as the main source of quality of life data set (Y variables set). European Environment Agency statistics and (for outdoor air-PM10) WHO statistics were used as the main source of air quality data set (X variables set). It is found that there are significant positive correlation between air quality and quality of life. 相似文献
3.
Litao Wang Carey Jang Yang Zhang Kai Wang Qiang Zhang David Streets Joshua Fu Yu Lei Jeremy Schreifels Kebin He Jiming Hao Yun-Fat Lam Jerry Lin Nicholas Meskhidze Scott Voorhees Dale Evarts Sharon Phillips 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3449-3457
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb. 相似文献
4.
5.
6.
Thomas C. Curran William F. Hunt Jr. 《Journal of the Air & Waste Management Association (1995)》2013,63(7):711-714
San Diego Gas &; Electric has developed a quality assurance program for continuous emission monitors (CEM). Extractive, rather than in situ, monitors were selected as a result of an in-house evaluation program. Two extractive systems have been certified and a good operating and maintenance record has been established on these systems. A successful program requires the involvement and support of all affected personnel. It is desirable to have one or two key personnel coordinate the development of the program. It is also highly desirable to have good in-house source testing capabilities. 相似文献
7.
8.
Modeling relationships between indoor and outdoor air quality 总被引:4,自引:0,他引:4
Information about the ratio between indoor and outdoor concentrations (IO ratios) of air pollutants is a crucial component in human exposure assessment. The present study examines the relationship between indoor and outdoor concentrations as influenced by the combined effect of time patterns in outdoor concentrations, ventilation rate, and indoor emissions. Two different mathematical approaches are used to evaluate IO ratios. The first approach involves a dynamic mass balance model that calculates distributions of transient IO ratios. The second approach assumes a linear relationship between indoor and outdoor concentrations. We use ozone and benzene as examples in various modeling exercises. The modeled IO ratio distributions are compared with the results obtained from linear fits through plots of indoor versus outdoor concentrations. 相似文献
9.
Rao ST Zalewsky E Zurbenko IG 《Journal of the Air & Waste Management Association (1995)》1995,45(1):57-61
Unless the change in emissions is substantial, the resulting improvement in ozone air quality can be easily masked by the meteorological variability. Therefore, the meteorological and chemical signals must be separated in examining ozone trends. In this paper, we discuss the use of the Kolmogorov-Zurbenko filter in evaluating the temporal and spatial variations in ozone air quality utilizing ozone concentration data from several monitoring locations in the northeastern United States. The results indicate a downward trend in the ozone concentrations during the period 1983-1992 at most locations in the northeastern United States. The results also reveal that ozone is a regional-scale problem in the Northeast. 相似文献
10.
Claudio Carnevale Giovanna Finzi Enrico Pisoni Marialuisa Volta 《Atmospheric environment (Oxford, England : 1994)》2009,43(31):4811-4821
In order to define efficient air quality plans, Regional Authorities need suitable tools to evaluate both the impact of emission reduction strategies on pollution indexes and the costs of such emission reductions. The air quality control can be formalized as a two-objective nonlinear mathematical problem, integrating source–receptor models and the estimate of emission reduction costs. Both aspects present several complex elements. In particular the source–receptor models cannot be implemented through deterministic modelling systems, that would bring to a computationally unfeasible mathematical problem. In this paper we suggest to identify source–receptor statistical models (neural network and neuro-fuzzy) processing the simulations of a deterministic multi-phase modelling system (GAMES). The methodology has been applied to ozone and PM10 concentrations in Northern Italy. The results show that, despite a large advantage in terms of computational costs, the selected source–receptor models are able to accurately reproduce the simulation of the 3D modelling system. 相似文献
11.
Effect of climate change on air quality 总被引:2,自引:0,他引:2
Daniel J. Jacob Darrell A. Winner 《Atmospheric environment (Oxford, England : 1994)》2009,43(1):51-63
Air quality is strongly dependent on weather and is therefore sensitive to climate change. Recent studies have provided estimates of this climate effect through correlations of air quality with meteorological variables, perturbation analyses in chemical transport models (CTMs), and CTM simulations driven by general circulation model (GCM) simulations of 21st-century climate change. We review these different approaches and their results. The future climate is expected to be more stagnant, due to a weaker global circulation and a decreasing frequency of mid-latitude cyclones. The observed correlation between surface ozone and temperature in polluted regions points to a detrimental effect of warming. Coupled GCM–CTM studies find that climate change alone will increase summertime surface ozone in polluted regions by 1–10 ppb over the coming decades, with the largest effects in urban areas and during pollution episodes. This climate penalty means that stronger emission controls will be needed to meet a given air quality standard. Higher water vapor in the future climate is expected to decrease the ozone background, so that pollution and background ozone have opposite sensitivities to climate change. The effect of climate change on particulate matter (PM) is more complicated and uncertain than for ozone. Precipitation frequency and mixing depth are important driving factors but projections for these variables are often unreliable. GCM–CTM studies find that climate change will affect PM concentrations in polluted environments by ±0.1–1 μg m?3 over the coming decades. Wildfires fueled by climate change could become an increasingly important PM source. Major issues that should be addressed in future research include the ability of GCMs to simulate regional air pollution meteorology and its sensitivity to climate change, the response of natural emissions to climate change, and the atmospheric chemistry of isoprene. Research needs to be undertaken on the effect of climate change on mercury, particularly in view of the potential for a large increase in mercury soil emissions driven by increased respiration in boreal ecosystems. 相似文献
12.
13.
In the summer of 1998, the air quality (indicators: CO, NO, NO2, O3) above the water surface of the Lake Balderey (Essen, Ruhr area, North Rhine-Westphalia, Germany), an artificial lake used for recreation purposes, was measured using the Fourier transform infrared spectroscopy (FTIR) and differential optical absorption spectroscopy (DOAS) remote measurement methods. The lake, with an area of 3 km2 was created by damming the Ruhr and is surrounded by higher ground. In calm, bright weather conditions, this location results in a low-exchange situation (formation of temperature inversions, cold air dynamics) with a sustained impact on pollutant concentrations over the lake. The results of trace substance measurements (1/2 h mean values) were compared with values from comparison stations (suburban, high traffic and forest) located outside the area of the lake. In general, it was found that mean CO and NO concentrations over the lake were very low (0.3 ppm and 7.5 ppb, respectively). NO2 values (15 ppb) were some 3.5 times higher than those recorded at the forest station and O3 values, at 27 ppb, almost reached the same level as at the forest station (30 ppb). Mass flow densities as a function of wind direction, diurnal courses, differences between weekdays and weekends and comparisons with air quality standards are presented for the lake station. 相似文献
14.
Karaca F 《Journal of the Air & Waste Management Association (1995)》2012,62(4):408-419
In this study, the particulate matter (with an aerodynamic diameter <10 microm; PM10) profile of Turkey with data from the air quality monitoring stations located throughout the country was used. The number of stations (119) was reduced to 55 after a missing data treatment for statistical analyses. First, a classification method was developed based on ongoing national and international (European Commission directives) legislations to categorize air zones into six groups, from a "Very Clear Air Zone" to a "Polluted Air Zone". Then, a Geographic Information System (GIS)-based interpolation technique and statistical analyses (correlation analysis and factor analysis) were used to generate PM10 pollution profiles of the annual heating time and nonheating time periods. Finally, the coherent air pollution management zones of Turkey, based on air quality criteria and measured data using a GIS-based model supported by statistical analyses, were suggested. Based on the analysis, four hot spots were identified: (i) the eastern part of the Black Sea region; (ii) the northeastern part of inland Anatolia; (iii) the western part of Northeastern Anatolia; and (vi) the eastern part of Turkey. The possible reasons for the elevated PM10 levels are discussed using topographic, climatologic, land use, and energy utilization parameters. Finally, the suggested air zones were compared with the administrative air zones, which were newly developed by the Turkish Ministry of Environment and Forestry, to evaluate the level of agreement between the two. 相似文献
15.
Xiang Li Ling Peng Yuan Hu Jing Shao Tianhe Chi 《Environmental science and pollution research international》2016,23(22):22408-22417
With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance. 相似文献
16.
Ch. Vlachokostas S.A. Nastis Ch. Achillas K. Kalogeropoulos I. Karmiris N. Moussiopoulos E. Chourdakis G. Banias N. Limperi 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3352-3361
This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area’s agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered. 相似文献
17.
18.
Brian Freeman Ed McBean Bahram Gharabaghi 《Journal of the Air & Waste Management Association (1995)》2017,67(5):550-564
Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO2 and 8-hr O3 within a zone that meets the compliance requirements of each method. The first method, the “3 Strike” method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of the statistical tests, causing the null hypothesis to fail. Local air quality managers can use either methodology to classify the compliance of an air zone, but must accept that the 99% Rule method may cause exposures that are statistically more significant than the 3 Strike method.
Implications: A novel method using the Central Limit Theorem and Monte Carlo analysis is used to directly compare different air standard compliance classification methods by estimating the chronic daily intake of pollutants. This method allows air quality managers to rapidly see how individual classification methods may impact individual population groups, as well as to evaluate different pollutants based on dosage and exposure when complete health impacts are not known. 相似文献
19.
R. Vautard M. Schaap R. Bergström B. Bessagnet J. Brandt P.J.H. Builtjes J.H. Christensen C. Cuvelier V. Foltescu A. Graff A. Kerschbaumer M. Krol P. Roberts L. Rouïl R. Stern L. Tarrason P. Thunis E. Vignati P. Wind 《Atmospheric environment (Oxford, England : 1994)》2009,43(31):4822-4832
Recently several regional air quality projects were carried out to support the negotiation under the Clean Air For Europe (CAFE) programme by predicting the impact of emission control policies with an ensemble of models. Within these projects, CITYDELTA and EURODELTA, the fate of air quality at the scale of European cities or that of the European continent was studied using several models. In this article we focus on the results of EURODELTA. The predictive skill of the ensemble of models is described for ozone, nitrogen dioxide and secondary inorganic compounds, and the uncertainty in air quality modelling is examined through the model ensemble spread of concentrations.For ozone daily maxima the ensemble spread origin differs from one region to another. In the neighbourhood of cities or in mountainous areas the spread of predicted values does not span the range of observed data, due to poorly resolved emissions or complex-terrain meteorology. By contrast in Atlantic and North Sea coastal areas the spread of predicted values is found to be larger than the observations. This is attributed to large differences in the boundary conditions used in the different models. For NO2 daily averages the ensemble spread is generally too small compared with observations. This is because models miss highest values occurring in stagnant meteorology in stable boundary layers near cities. For secondary particulate matter compounds the simulated concentration spread is more balanced, observations falling nearly equiprobably within the ensemble, and the spread originates both from meteorology and aerosol chemistry and thermodynamics. 相似文献
20.
《Atmospheric environment (Oxford, England : 1994)》2007,41(30):6379-6395
A network of 10 stations, with passive sampling for VOCs (including benzene), NO2, and SO2, over 2-week periods, grab sampling for CO, and 48-h pumped sampling for PM10, was set up to make an air quality survey for 12 months around Aberdeen Harbour. Benzene, CO, SO2 and PM10 were always well below the AQS target values. However, NO2 frequently showed a pronounced gradient across the harbour reaching its highest concentrations at the city end, indicating that the road traffic was the principal source of the pollution. This was backed up by the predominance of aromatics in the VOCs in the city centre, derived from petrol engined vehicles, compared to the predominance of alkanes and alkenes around the docks, derived from diesel engined heavy trucks and possibly ships. Black carbon on the PM10 filters also showed a gradient with highest levels in the city centre. It is proposed that for such surveys in future, NO2 and black carbon would be the two most informative parameters.This emissions inventory has shown first, that trucks contribute very little to the total, and second, that the ro-ro ferries are the major contributors as they burn light fuel oil while the oil platform supply vessels burn low-sulphur marine gas oil with around 0.1% S. When the whole picture of the emissions from the city is considered, the emissions from the harbour constitute only a small part. 相似文献