首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study uses case studies of model-predicted regional precipitation and wet ion deposition over 5-year periods to estimate errors in corresponding regional values derived from the means of site-specific values within regions of interest located in the eastern US. The mean of model-predicted site-specific values for sites within each region was found generally to overestimate the corresponding model-predicted regional wet ion deposition. On an annual basis across four regions in the eastern US, these overestimates of regional wet ion deposition were typically between 5 and 25% and may be more exaggerated for individual seasons. Corresponding overestimates of regional precipitation were typically <5%, but may be more exaggerated for individual seasons. Period-to-period relative changes determined from the mean of site-based model-predicted wet deposition for the current regional ensembles of sites generally estimated larger beneficial effects of pollutant emissions reductions in comparison to changes based on model-predicted regional wet deposition. On an annual basis site-based relative changes were generally biased low compared to regional relative changes: differences were typically <7%, but they may also be more exaggerated for individual seasons. Spatial heterogeneities of the wet ion deposition fields with respect to the sparse monitoring site locations prevented the monitoring sites considered in the current study from providing regionally representative results. Monitoring site locations considered in the current study over-represent the geographical areas subject to both high emissions and high wet ion deposition and under-represent the geographical areas subject to low emissions and low wet deposition. Since the current case studies consider only those eastern US site locations that have supported concurrent wet and dry deposition monitoring, similar errors may be expected for dry and total deposition using results from the same monitoring site locations. Current case study results illustrate the approximate range of potential errors and suggest caution when inferring regional acid deposition from a network of sparse monitoring sites.  相似文献   

2.
We provide a longer-term record of Hg wet deposition at two tropical latitude monitoring sites in Mexico, selected to provide regionally representative data. Weekly wet deposition samples were collected over 2 years, from September 2003 to November 2005. Based on this data set, we discuss the magnitude and seasonal variation of Hg in wet deposition and compare the results to other measurement sites and to several model estimates. With precipitation-weighted mean (PWM) concentrations of 8.2 and 7.9 ng L?1, respectively, during the sampling period from Sep 30 2003 to Oct 11 2005, and median weekly concentrations of 9.4?±?1 ng L?1 for both sites, the wet Hg concentrations and deposition at HD01 were much lower than those observed at the US Gulf Coast MDN sites while the wet Hg deposition at OA02 was much lower than most MDN sites, but somewhat similar to US MDN sites along the Pacific Coast. Based on the limited available data, we conclude that the approximately 30 % higher average precipitation at HD01 and roughly equal PWM concentrations lead to the higher deposition at HD01 versus OA02. We believe that these observations may offer scientists and modelers additional understanding of the depositional fluxes in the lower latitudes of North America.  相似文献   

3.
In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source?Creceptor (S?CR) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO2 and NOx obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud?Cprecipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6?±?370 kt S with a minimal mean fractional error (MFE) of 8.95?±?5.24?% and a pattern correlation (PC) of 0.89?C0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S?CR relationship that can be applied to the next task of designing cost-effective emission abatement strategies.  相似文献   

4.
To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg?1, respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.  相似文献   

5.
An intensive 1-month atmospheric sampling campaign was conducted concurrently at eight monitoring sites in central Illinois, USA, from June 9 to July 3, 2011 to assess spatial patterns in wet and dry deposition of mercury and other trace elements. Summed wet deposition of mercury ranged from 3.1 to 5.4 μg/m2 across sites for the total study period, while summed dry deposition of reactive mercury (gaseous oxidized mercury plus particulate bound mercury) ranged from 0.7 to 1.6 μg/m2, with no statistically significant differences found spatially between northern and southern sites. Ratios of summed wet to summed dry mercury deposition across sites ranged from 2.2 to 4.9 indicating that wet deposition of mercury was dominant during the study period. Volume-weighted mean mercury concentrations in precipitation were found to be significantly higher at northern sites, while precipitation depth was significantly higher at southern sites. These results showed that substantial amounts of mercury deposition, especially wet deposition, occurred during the study period relative to typical annual wet deposition levels. Summed wet deposition of anthropogenic trace elements was much higher, compared to summed dry deposition, for sulfur, selenium, and copper, while at some sites summed dry deposition dominated summed wet deposition for lead and zinc. This study highlights that while wet deposition of Hg was dominant during this spring/summer-season study, Hg dry deposition also contributed an important fraction and should be considered for implementation in future Hg deposition monitoring studies.  相似文献   

6.
The large differences in seasonal rates of wet sulfate deposition observed at many receptors in eastern North America imply that reducing SO2 emissions only in the summer half of the year (April-September) would bring about greater annual wet sulfate deposition reductions than reducing emissions by the same amount year-round. Targeting the emission reductions to those source areas which contribute the bulk of summer depositions in ecologically sensitive areas would increase further the gain factor, defined as the ratio of annual fractional deposition decrement to annual fractional emission decrement. In the northeastern U.S., between 10 and 15 rain episodes deposit about 60 percent of the annual wet sulfate; reducing emissions in the dry periods preceding these heavy deposition episodes could further increase the gain factor. However, it is difficult to predict these episodes, and they do not occur simultaneously over large regions of the country.  相似文献   

7.
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper.  相似文献   

8.
Wet deposition fluxes of organochlorine pesticides (OCPs) were determined for rain samples collected in a coastal area of Turkey. Seventeen precipitation samples were collected over a 1-year period from 2008 to 2009. Rainwater was accumulated at the beginning of rain events using real time monitoring. Atmospheric concentrations were also measured in parallel with deposition samples. Both atmospheric concentrations and deposition fluxes were determined as particle and gas phases. The particle phase and dissolved phase deposition fluxes were 794.26?±?756.70 ngm?2 day?1 and 800.77?±?672.63 ngm?2 day?1, respectively. The washout ratios for OCP compounds were calculated separately for the particle and dissolved phases using the atmospheric concentrations and rain concentrations. The minimum washout ratio for the particle phase was 2339.47 for Endrin aldehyde, whereas the maximum washout ratio was 497593.34 for Methoxychlor. The maximum washout ratio for the dissolved phase was 247523.89 for Endosulfan beta, whereas the minimum washout ratio was 10169.69 for p,p′-DDT. The dry deposition velocities ranged from 0.01 to 1.67 cms?1. The partitioning of wet deposition between the particle and dissolved phases was 50 % in terms of total OCP deposition.  相似文献   

9.
Urban lakes are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs from wet and dry atmospheric deposition. Little was reported on the seasonal patterns of atmospheric deposition of PAHs under Asian monsoon climate. Bulk (dry + wet) particle deposition, air-water diffusion exchange, and vapour wet deposition of PAHs in a small urban lake in Guangzhou were estimated based on a year-round monitoring. The total PAH particle deposition fluxes observed were 0.44-3.46 μg m−2 day−1. The mean air-water diffusive exchange flux was 20.7 μg m−2 day−1. The vapour deposition fluxes of PAHs ranged 0.15-8.26 μg m−2 day−1. Remarkable seasonal variations of particulate PAH deposition, air-water exchange fluxes and vapour wet deposition were influenced by seasonal changes in meteorological parameters. The deposition fluxes were predominantly controlled by the precipitation intensity in wet season whereas by atmospheric concentration in dry season.  相似文献   

10.
Temperate woodland ecosystems are believed to be both a source and sink for atmospheric methyl bromide and methyl chloride. To separate the gross production and consumption fluxes in this ecosystem, we applied a stable isotope tracer technique in field and laboratory-based experiments. Flux measurements were conducted in a California oak-savanna woodland ecosystem at several intervals throughout the day during the wet and dry seasons to observe the diurnal and seasonal variability of fluxes. While gross production was small and variable, gross consumption showed a clear difference between seasons, with much larger rates during the wet season and negligible rates during the dry season. Laboratory incubations confirmed that fluxes were strongly affected by soil moisture. Consumption rates of methyl bromide, however, are less than half of the previous estimates of temperate woodland soil uptake rates during the growing season. Nevertheless, woodlands cover a significant portion of the world's land surface area and may still be an important component of the soil sink for these methyl halides.  相似文献   

11.
The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998-2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

12.
I X Tsiros 《Chemosphere》2001,44(2):99-107
Dynamics of airborne mercury deposited onto catchment areas is investigated within the framework of a simulation model. Model results show that, for a particular atmospheric deposition rate, significant interannual variability in mercury transport flux in catchments is caused by climatology and corresponding differences in catchment soil loss rates; in comparison to the normal year, runoff flux increased by a factor of 2-3 for the wet year (rainfall 35% above normal) while for the dry year (rainfall 18% below normal) runoff flux decreased by factors of 5-7. The interaction of parameters describing soil type, topography and vegetation cover causes variability in both transport and emission fluxes among catchments; as soil loss rate increases by a factor of 5 due to variations in these parameters among the examined catchments, annual average transport flux increases by a factor of 3; and annual average emission flux of mercury (as Hg0) from soil to the atmosphere decreases by a factor of 2 due to the decreased levels of soil mercury associated with catchment soil loss increases. Seasonal variability of transport flux is associated with seasonal changes in precipitation and soil loss rates while seasonal changes of emission flux are primarily due to changes in soil moisture regime and temperature. Although modeled results are consistent with observational data from previous studies, they must be interpreted in a relative sense due to the screening-level character of this study.  相似文献   

13.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

14.
The acid deposition model is developed and applied to assess the sulfur deposition pathways in Asia. Simulations for four seasons are conducted: February, April, August, and October. The predicted results of summer and winter are compared to measured concentration of SO2, sulfate, and sulfate wet deposition in Japan. Further comparison of sulfate wet deposition to observations in China is made to assess the general performance of the model. The study shows that wet deposition is more important than dry deposition. It is the predominant factor in each of these four months. It is also found that rainout process, compared to washout process, make a larger contribution to sulfate wet deposition in summer and spring than in the dry months, such as October. The total sulfur wet to dry deposition ratio is 1.6 in February, 1.2 in April, 2.9 in August, and 1.9 in October.  相似文献   

15.
The estimated annual throughfall deposition flux of Hg in a northern mixed-hardwood forest in the Lake Huron Watershed was 10.5±1.0 μg m−2 compared to an annual precipitation Hg flux of 8.7±0.5 μg m−2 (June 1996–June 1997). The source of this additional Hg in throughfall is often attributed to wash-off of dry deposition, but foliar leaching of Hg may also be important. To determine the influence of both dry deposition and foliar leaching of Hg and other elements in throughfall, we measured a suite of trace elements (Hg, Al, Mg, V, Mn, Cu, Zn, As, Rb, Sr, Cd, Ba, La, Ce, and Pb) in throughfall, precipitation, and ambient air samples from a northern mixed-hardwood forest. Based on a multiple linear regression model, dry deposition had the most important influence on Hg, Al, La, Ce, V, As, Cu, Zn, Cd, and Pb fluxes while foliar leaching strongly influenced Mg, Mn, Rb, Sr, and Ba fluxes in net throughfall. The Hg dry deposition flux was estimated using gaseous and aerosol Hg measurements and modeled deposition velocities. The calculated dry deposition flux (∼12–14 μg m−2) of Hg to the canopy indicated that atmospheric deposition of Hg could easily account for all of the Hg deposited in net throughfall (1.9±0.1 μg m−2). Although there is a large uncertainty associated with these techniques, the modeling estimates indicate that atmospheric Hg may account for all of the Hg deposited in litterfall (11.4±2.8 μg m−2).  相似文献   

16.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

17.
The concentrations of ambient total suspended particulates (TSP) and PM2.5, and the dry depositions at a sample site at Luliao Junior High School (Luliao) in central Taiwan were measured during smog and non-smog days between December 2017 and July 2018. The results are compared to those obtained during non-smog periods in the years 2015–2017. The mean TSP and PM2.5 concentrations and dry deposition flux were 72.41?±?26.40, 41.88?±?23.51?μg/m3, and 797.57?±?731.46?μg/m2 min, respectively, on the smog days. The mean TSP and PM2.5 concentrations and dry deposition flux on the non-smog days were 56.39?±?18.08, 34.81?±?12.59?μg/m3 and 468.93?±?600.57?μg/m2 min, respectively. The mean TSP concentration in the smog period was 28% greater than that in the non-smog period, and the mean PM2.5 concentration was 20% higher. The mean dry deposition flux in the smog period was 70% higher than that in the non-smog period at Luliao. The PM2.5 concentrations exceeded the standards set by the Taiwan EPA (35?μg/m3 daily, and 15?μg/m3 annually). Therefore, the TSP and PM2.5 concentrations and dry deposition must be reduced in central Taiwan on smog days. In addition, atmospheric TSP and PM2.5 concentrations at various sampling sites were compared, and those herein were not higher than those measured in other countries. Finally, apart from the local traffic emissions, during smog periods, the other pollution source originated from the transportation process of traffic pollutants emitted in the northwest side of Taiwan.  相似文献   

18.
Atmospheric aerosols were collected in separate coarse (2–10 μm diameter) and fine (diameter less than 2 μm) size fractions at Rukomechi Research Station (16.1°S, 29.4°E), Zimbabwe, in the central part of southern Africa, from September 1994 to January 2000. The samples were analysed for the particulate mass (PM), black carbon, and 47 elements. The overall data set and the separate wet and dry season data sets were examined with absolute principal component analysis (APCA). Natural and anthropogenic aerosol sources were identified in both seasons, but the sources and their contributions to the total PM were found to vary between seasons and between size fractions. Crustal matter, sea salt (SS), a mixed biogenic (BIO) emission/biomass burning (BB) component, and a copper component were identified for the coarse aerosols during the wet season. APCA attributed 29% of the total wet season coarse PM to the mixed BIO/BB component, and 32% to SS. The copper component is likely due to the copper smelters in the Zambian Copperbelt. The dry season coarse PM originated from crustal matter, BB, BIO, and SS sources, with the major contribution (32%) coming from BB. Four components (crustal matter, BB, non-ferrous smelters, and SS) were identified for the fine particles for both the wet and dry seasons. The BB component provided the major contribution to the total fine PM, accounting for 44% and 79% in the wet and dry seasons, respectively. The relative contributions to the total PM (both fine and coarse) for all sources were greater in the dry season than the wet season, except for SS.  相似文献   

19.
In this study, a consistent basin-wise monthly time series of the atmospheric nutrient load to the Baltic Sea during 1850-2006 was compiled. Due to the lack of a long time series (1850-1960) of nutrient deposition to the Baltic Sea, the data set was compiled by combining a time series of deposition data at the Baltic Nest Institute from 1970 to 2006, published historical monitoring data and deposition estimates, as well as recent modeled Representative Concentration Pathways (RCP) emission estimates. The procedure for nitrogen compounds included estimation of the deposition in a few intermediate reference years, linear interpolation between them, and the decomposition of annual deposition into a seasonal deposition pattern. As no reliable monitoring results were found for the atmospheric deposition of phosphorus during the early period of our study, we used published estimates for the temporal and spatial pattern of the phosphorus load.  相似文献   

20.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号