首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Background and purpose  

In Pakistan, almost 70% of the population lives in rural areas. Ninety-four percent of households in rural areas and 58% in urban areas depend on biomass fuels (wood, dung, and agricultural waste). These solid fuels have poor combustion efficiency. Due to incomplete combustion of the biomass fuels, the resulting smoke contains a range of health-deteriorating substances that, at varying concentrations, can pose a serious threat to human health. Indoor air pollution accounts for 28,000 deaths a year and 40 million cases of acute respiratory illness. It places a significant economic burden on Pakistan with an annual cost of 1% of GDP. Despite the mounting evidence of an association between indoor air pollution and ill health, policy makers have paid little attention to it. This review analyzes the existing information on levels of indoor air pollution in Pakistan and suggests suitable intervention methods.  相似文献   

2.
The microclimatic monitoring of the historic church of Mogi?a Abbey (Kraków, Poland) was carried out to study the impact of the environmental parameters on the organic and hygroscopic artworks. Specific indexes were proposed to objectively assess the quality of time series of temperature (T), relative humidity (RH), and carbon dioxide (CO2) before applying the exploratory data analysis. The series were used to define the historic environmental conditions as stated in the European Standard EN 15757:2010 and with the use of the climate evaluation chart (CEC). It was found that the percentage of time in which T and RH values are within the allowable limits of the ASHRAE (2011) Class B is more than 85 %. This means that, for about 15 % of the time, there is a high risk of mechanical damage to highly vulnerable objects mainly due to the RH variability. The environment at the chancel resulted moister than that at the cornice, and the fungal growth is possible. In addition, the time-weighted preservation index (TWPI) is computed to evaluate the life expectancy of the objects, taking into account the environmental conditions of the site under study. The method of analogues, developed to predict the evolution of a system given observations of the past and without the knowledge of any equation among variables, was proposed and applied to the time series of temperature, relative humidity, and carbon dioxide with a 1-h sampling time to avoid the influence of the autocorrelation.  相似文献   

3.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.  相似文献   

4.
Although PCB in caulking materials has been forbidden for many years in most of Europe, including Denmark, there has been continued interest to measure PCB levels in the air of contaminated buildings and blood of the occupants (Mengon and Schlatter 1993, Fromme et al. 1996, Ewers et al. 1998, Currado and Harrad 1998, Gabrio et al. 2000). The relatively low priority for investigations of this contamination is probably due to the small quantities inhaled compared to exposure via food, and the rapid metabolism of the most volatile congeners demonstrated by low concentrations of all congeners in the blood of exposed persons (Ewers et al. 1998, Gabrio et al. 2000). There is, however, evidence that PCB containing caulking materials have been used even during the '90s (Fromme et al. 1996). In Denmark, it is estimated that 75 t PCB is still in buildings (Organization of Sealant Branch's Manufacturers and Distributors 2000). During an investigation of dust from buildings with excessive microbial growth (including 35 rooms from 9 buildings), the analysis of semivolatile compounds by thermal desorption-GC/MS of samples from a single building surprisingly revealed large amounts of PCBs containing 3, 4 and 5 chlorine atoms, 10-20 times the amounts found in samples from other buildings. Extraction of the dust by SFE followed by GC/ECD analysis for 12 PCB congeners showed that there was approximately 20 times the total PCB concentrations in dust from the polluted building compared to the levels in the other buildings. Subsequent headspace analysis of caulking material from the polluted building revealed this to be the source. Shelf dust functions as a passive sampling medium and, thus, can be used as a screening method to detect PCB and other semivolatile pollution indoors.  相似文献   

5.
Indoor air pollution caused by volatile organic compounds (VOCs) may affect the health and well-being of inhabitants. Uptake and release of these compounds by and from indoor materials alter their concentrations in indoor air: uptake will lower peak concentrations, whereas subsequent (slow) release at lower concentration levels will prolong the presence of VOCs in indoor air. An experimental set-up has been implemented where indoor materials are placed as a “membrane” separating two air compartments. Both compartments – consisting of Field and Laboratory Emission Cells FLECs – are constantly flushed with air, one air stream containing a mixture of 20 VOCs, and concentrations in both compartments are measured after 1 h. Ten materials usually covering extensive surfaces indoors were consecutively exposed to the vapour mixture at concentration levels typically found in indoor environments. Under the chosen experimental conditions, five of these materials exhibited a permeability high enough that VOCs could be detected on the other side. Mass transport of VOCs into and through indoor materials has therefore been confirmed by experiment. The set-up allows for a quick screening of indoor materials with respect to their sorption capacity and permeability.  相似文献   

6.
Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0.10–2.35 μg/L with deviations from theoretical values of 3.2–10.5 %. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 μg/m2/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant influence on the removal rate obtained by H. helix.  相似文献   

7.

A wide variety of methods have been applied in indoor air to reduce the microbial load and reduce the transmission rate of acute respiratory diseases to personnel in healthcare sittings. In recent months, with the occurrence of COVID-19 pandemic, the role of portable ventilation systems in reducing the load of virus in indoor air has received much attention. The present study delineates a comprehensive up-to-date overview of the available photocatalysis technologies that have been applied for inactivating and removing airborne viruses. The detection methods for identifying viral particles in air and the main mechanisms involving in virus inactivation during photocatalysis are described and discussed. The photocatalytic processes could effectively decrease the load of viruses in indoor air. However, a constant viral model may not be generalizable to other airborne viruses. In photocatalytic processes, temperature and humidity play a distinct role in the inactivation of viruses through changing photocatalytic rate. The main mechanisms for inactivation of airborne viruses in the photocatalytic processes included chemical oxidation by the reactive oxygen species (ROS), the toxicity of metal ions released from metal-containing photocatalysts, and morphological damage of viruses.

  相似文献   

8.
Environmental Science and Pollution Research - Due to excessive application of essential oils and scented products in spa salons during aromatherapy and massage sessions, the elevated concentration...  相似文献   

9.
10.
The concentrations of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) have been determined in the indoor air of 115 private non-smoker homes (∼380 individual rooms) situated in areas with an extreme traffic situation, i.e. in city streets (street canyons) with high traffic density and in rural areas with hardly any traffic at all. The influence of the traffic on the indoor concentration was apparent in the high traffic area. In order to identify other factors influencing the BTEX concentrations, the data and additional questionnaires were analyzed by univariate and multivariate analysis. The analysis was supplemented by some case studies. It is shown that meteorology (the seasons), the type of room (e.g. living room versus bedroom), the ventilation and, in particular, garages in the house strongly influence the indoor concentration of BTEX. Thus, the indoor BTEX level is significantly higher in winter than in summer. Moreover, garages with a connecting door to the living quarters lead to high indoor concentrations of aromatic hydrocarbons in these rooms. In addition, the storage of solvents and hobby materials, and also the presence of smoking guests increase the BTEX level. If rooms are directly heated by coal or wood, the BTEX level is higher compared to the use of gas heating. Surprisingly, no correlation was found between the building materials used and the BTEX level. Case studies were carried out for two homes with an integrated garage (and a connecting door to the living rooms) and for seven homes where redecoration work was carried out during sampling. In both instances, a pronounced increase was observed in the BTEX concentration.  相似文献   

11.
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO2, SO2, O3 and PM2.5) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O3>PM2.5>NO2>humidity followed at a significant distance by the effects of SO2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space.

Implications: The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.  相似文献   


12.
Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants’ ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants’ rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.  相似文献   

13.
14.
Prior to this study, indoor air constituent levels and ventilation rates of hospitality environments had not been measured simultaneously. This investigation measured indoor Environmental Tobacco Smoke-related (ETS-related) constituent levels in two restaurants, a billiard hall and a casino. The objective of this study was to characterize ETS-related constituent levels inside hospitality environments when the ventilation rates satisfy the requirements of the ASHRAE 62-1989 Ventilation Standard. The ventilation rate of each selected hospitality environment was measured and adjusted. The study advanced only if the requirements of the ASHRAE 62-1989 Ventilation Standard – the pertinent standard of the American Society of Heating, Refrigeration and Air Conditioning Engineers – were satisfied. The supply rates of outdoor air and occupant density were measured intermittently to assure that the ventilation rate of each facility satisfied the standard under occupied conditions. Six ETS-related constituents were measured: respirable suspended particulate (RSP) matter, fluorescent particulate matter (FPM, an estimate of the ETS particle concentrations), ultraviolet particulate matter (UVPM, a second estimate of the ETS particle concentrations), solanesol, nicotine and 3-ethenylpyridine (3-EP). ETS-related constituent levels in smoking sections, non-smoking sections and outdoors were sampled daily for eight consecutive days at each hospitality environment. This study found that the difference between the concentrations of ETS-related constituents in indoor smoking and non-smoking sections was statistically significant. Differences between indoor non-smoking sections and outdoor ETS-related constituent levels were identified but were not statistically significant. Similarly, differences between weekday and weekend evenings were identified but were not statistically significant. The difference between indoor smoking sections and outdoors was statistically significant. Most importantly, ETS-related constituent concentrations measured indoors did not exceed existing occupational standards. It was concluded that if the measured ventilation rates of the sampled facilities satisfied the ASHRAE 62-1989 Ventilation Standard requirements, the corresponding ETS-related constituents were measured at concentrations below known harmful levels as specified by the American Conference of Governmental Industrial Hygiene (ACGIH).  相似文献   

15.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

16.
The occurrence of magnetotactic bacteria (MTB) on a Tunisian marine coast exposed to heavy metals pollution (Sfax, Gulf of Gabès, Mediterranean Sea) was investigated. The MTB population of this Southern Mediterranean coast was compared to the MTB populations previously investigated on the French Northern Mediterranean coast. A dominant MTB coccus morphotype was observed by microscopy analysis. By pyrosequencing technology, the analysis of the 16S ribosomal RNA (rDNA) revealed as much as 33 operational taxonomic sequence units (OTUs) close to sequences of MTB accessible in the databases. The majority were close to MTB sequences of the “Med group” of α-Proteobacteria. Among them, a dominant OTU_001 (99 % of the MTB sequences) affiliated within the Magnetococcales order was highlighted. Investigating the capacities of this novel bacterium to be used in bioremediation and/or depollution processes could be envisaged.  相似文献   

17.
The Noise Control Act of 1972, passed by the U. S. Congress, established the Office of Noise Abatement and Control within the U. S. Environmental Protection Agency. The following discussion presents the background of this legislation, a general conceptual approach to implementing the legislation, and the practical implementation of that legislation to date by the Office of Noise Abatement and Control (ONAC).  相似文献   

18.
This paper examines the relation between the results of epidemiologic studies of air pollution mortality and impact indicators that can be informative for environmental policy decisions. Using models that are simple and transparent, yet contain the essential features, it is shown that (1) number of deaths is not meaningful for air pollution, whereas loss of life expectancy (LLE) is an appropriate impact indicator; (2) the usual short-term (time series) studies yield a change in daily number of deaths attributable to acute effects of pollution, without any information on the associated LLE (although some information on this has recently become available by extending the observation window of time series); and (3) long-term studies yield a change in age-specific mortality, which makes it possible to calculate the total population averaged LLE (acute and chronic effects) but not the total number of premature deaths attributable to air pollution. The latter is unobservable because one cannot distinguish whether few individuals suffer a large or many suffer a small LLE. The paper calculates the LLE from exposure to PM10, as implied by the long-term mortality studies of adults and infants; population LLE for infants turns out to be an order of magnitude smaller than for adults. The LLE implied by short-term studies is a small fraction of the total loss implied by long-term studies, even if one assumes a very high loss per death. Applied to environmental policy, taking a permanent 50-70% reduction of PM10 as a reasonable goal, one finds a corresponding increase of average life expectancy in urban areas of the European Union (EU) and the United States of approximately four months.  相似文献   

19.
Marfil-Vega R  Suidan MT  Mills MA 《Chemosphere》2011,82(10):1468-1474
A study using 17β-14C4-estradiol (14C-E2) was performed to confirm and characterize the catalytic transformation of estrogens in the presence of a model vegetable matter (namely rabbit food) as a surrogate material for vegetable wastes found in sewage. Results corroborated the occurrence of an abiotic transformation. Unknown transformation byproduct(s) accounted, respectively, for 38% and 9% of the initial radioactivity in liquid and extractable solid phases after 72 h; on the other hand, only 15% and 7% of this radioactivity corresponded to 14C-E2 in those same matrices. Mass balance was closed including the radioactivity irreversibly bounded to the solid phase. Formation of 14C4-estrone was monitored by Liquid Chromatography with tandem Mass Spectrometry detection; negative results were found in all sampling events. This process could be harnessed to optimize sustainable technologies for the removal of phenolic microcontaminants from wastewater.  相似文献   

20.
Seed characteristics play an important role in the colonization and subsequent persistence of species during succession in disturbed sites and thus may contribute to being able to predict restoration success. In the present study, we investigated how various seed characteristics participated in 11 spontaneous successional series running in different mining sites (spoil heaps, extracted sand and sand-gravel pits, extracted peatlands, and stone quarries) in the Czech Republic, Central Europe. Using 1864 samples from 1- to 100-years-old successional stages, we tested whether species optimum along the succession gradient could be predicted using 10 basic species traits connected with diaspores and dispersal. Seed longevity, diaspore mass, endozoochory, and autochory appeared to be the best predictors. The results indicate that seed characteristics can predict to a certain degree spontaneous vegetation succession, i.e., passive restoration, in the mining sites. A screening of species available in the given landscape (regional and local species pools) may help to identify those species which would potentially colonize the disturbed sites. Extensive databases of species traits, nowadays available for the Central European flora, enable such screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号