首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in scanning electron microscopy (SEM) have produced tabletop instruments capable of reasonable imaging resolution at less cost compared to conventional equipment. Combining the SEM with energy dispersive spectroscopy (EDS) allows the possibility of elemental analysis through detection of X-rays emitted from interaction between individual particles and the SEM electron beam, revealing their atomic composition. It’s well known that exposure to inhalable particulate matter (PM) poses health risks and routine monitoring of the chemical content of these has been realized. Exposure information is of a general character but by combining the chemical build-up of monitored particles and knowledge of their inherent health effects will allow better risk assessment. An analysis technique using a tabletop SEM with EDS is demonstrated on particles collected onto nucleopore filters from urban, industrial and rural areas. Detailed characterization of the instruments analysis capabilities as applied to PM are described.  相似文献   

2.
The response of nine optical particle counters of four different makes to known concentrations of monodisperse 1.2 μm dia. polystyrene aerosols was investigated. Correction factors varied between 0.25 and 180, and even for the same model between 2.7 and 70. It was concluded that frequent proper calibration (which includes a particle-detection efficiency determination) of such optical counters is a necessity if any reliability is to be placed on their results.  相似文献   

3.
Real-time chemical measurements have been made as part of a field study of air quality in the city and harbour of Cork, Ireland. The data relate to the year 2008, with particular attention paid to the period between May and August. Eight air quality parameters were measured: NO, O3, NO2, SO2, EC, OC, particulate SO42? and PM2.5. The data have been used in a novel way involving wind and temporal averaging, along with Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF) methodologies to extrapolate major source contributions for PM2.5. It is demonstrated that continuous monitoring of standard air quality parameters, such as NO, NO2, SO2, along with EC, OC and particulate SO42?, can be used to provide relevant, cost-effective initial estimates of source contributions to ambient PM2.5 levels. It is also shown that the benefit of including OC and particulate SO42? in the monitoring protocol is considerable. Three major source groups of ambient PM2.5 mass in Cork were identified and quantified using this combined monitoring and modelling approach; road transport (19%), domestic solid fuel burning (14%) and oil-fired domestic and industrial boilers, including power generation plants (31%).  相似文献   

4.
A fungicide (Rovral) and an insecticide (Permethrin) were identified by GC/MS in cyclohexane extracts of airborne particulate matter sampled by filtration at Delft (The Netherlands) during 1981.  相似文献   

5.
The wind speed dependence of concentrations of PM10, chloride, sulphate, nitrate, organic carbon, elemental carbon, particle number and NOx has been determined at three separate sites, Marylebone Road (kerbside), North Kensington (urban background) and Harwell (rural). The data are best described by a general dilution term multiplied by up to three separate source-related terms which we interpret as representing long-range transport sources, discrete local (including area) sources and marine sources respectively. Using this approach, the various particulate metrics can be quantitatively disaggregated according to the contributions of the three source types. The behaviour of nitrate is anomalous, probably due to an influence of wind speed upon the dissociation of ammonium nitrate.  相似文献   

6.
The applicability of tube-like diffusion samplers for the determination of ambient air concentrations of sulfur dioxide and nitrogen dioxide was evaluated. The diffusion tubes were made from polyethylene and triethanolamine was used as an absorbent. Artifacts due to the deposition of gaseous or particulate compounds to the tube walls were considered. With respect to sampling of nitrogen dioxide no interference by the tube walls could be observed. The determination of sulfur dioxide was strongly biased by the collection of particulate sulfate at the entrance part of the tube and along the tube walls. This effect leads to a large overestimation of the average air concentrations compared with fluorescence monitors.  相似文献   

7.
8.
Environmental Science and Pollution Research - Accuracy in the prediction of the particulate matter (PM2.5 and PM10) concentration in the atmosphere is essential for both its monitoring and...  相似文献   

9.
One of two topics explored is the limitations of the daily average in summarizing pollutant hourly profiles. The daily average of hourly measurements of air pollutant constituents provides continuity with previous studies using monitoring technology that only provided the daily average. However, other summary statistics are needed that make better use of all available information in 24-hr profiles. The daily average reflects the total daily dose, obscuring hourly resolution of the dose rate. Air pollutant exposures with comparable total daily doses may have very different effects when occurring at high levels over a few hours as opposed to low levels over a longer time. Alternative data-based choices for summary statistics are provided using principal component analysis to capture the exposure dose rate, while preserving ease of interpretation. This is demonstrated using the earliest hourly particle concentration data available for El Paso from archived records of particulate matter (PM)10. In this way, a significant association between evening PM10 exposures and nonaccidental daily mortality is found in El Paso from 1992 to 1995, otherwise missed using the daily average. Secondly, the nature and, hence, effects of particles in the ambient aerosol during El Paso sandstorms is believed different from that of particles present during still-air conditions resulting from atmospheric temperature inversions. To investigate this, wind speed (ws) is used as a surrogate variable to label PM10 exposures as Low-ws (primarily fine particles), High-ws (primarily coarse particles), or Mid-ws (a mixture of fine and coarse particles). A High-ws evening is significantly associated with a 10% lower risk of mortality on the succeeding third day, as compared with comparable exposures at Low- or Mid-ws. Although this analysis cannot be used to form firm conclusions because it uses a very small data set, it demonstrates the limitations of the daily average and suggests differential toxicity for different particle compositions.  相似文献   

10.
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM2.5) and ≤10 µm (PM10) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM2.5 concentrations the day before hospital admission and elevated PM10 concentrations 2 days before hospital admission. An increment of 10 μg/m3 in PM2.5 and PM10 was correlated with a 6% (95% CI 1.02–-1.10) and 4% (95% CI 1.00–1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM2.5 and PM10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China.

Implications: This study demonstrated that short-term exposure to atmospheric particulate matter (PM2.5/PM10) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.  相似文献   


11.
Samara C  Voutsa D 《Chemosphere》2005,59(8):1197-1206
The size distributions of airborne particulate matter (PM) and associated heavy metals Pb, Cd, Ni, Cr, V, Mn, Cu and Fe in different inhalable fractions (< 0.8 microm, 0.8-1.3 microm, 1.3-2.7 microm, 2.7-6.7 microm and > 6.7 microm) were determined at a traffic-orientated urban site in the city of Thessaloniki, northern Greece. The airborne PM displayed a bimodal distribution with most of the mass (52%) contained in the submicron size range (< 0.8 microm) and an additional minor mode (20%) in the coarse size fraction (> 6.7 microm). Characteristic size distributions of heavy metals allowed identification of three main behavioral types: (a) metals whose mass was resided mainly within the accumulation mode (Pb,Cd), (b) those which were distributed between fine, intermediate and coarse modes (Ni,Cu,Mn), and (c) those which were mainly found within particles larger than 2.7 microm in diameter (Fe). The mean mass median aerodynamic diameter (MMAD) of PM was found at 0.85+/-0.71 microm, while the mean MMADs of heavy metals followed the order Pb (0.96 +/- 0.71 microm) < Cd (1.14 +/- 0.82 microm) < V (1.38 +/- 0.63 microm) < Ni (1.45 +/- 0.88 microm) < Cu (2.04 +/- 0.77 microm) < Mn (2.61 +/- 1.23 microm) < Cr (2.91 +/- 1.40 microm) < Fe (3.82 +/- 0.88 microm). The measured distributions are believed to result from a combination of processes including local anthropogenic and natural sources, such as traffic, industrial emissions and resuspension of road dust.  相似文献   

12.
A statistical investigation of the connection between wind direction and wind speed and concentrations of airborne particulate matter at different places in Denmark is briefly described. The results show that the mean concentration levels over the whole country are highest in case of southerly to southeasterly winds. In general, the mean concentrations are decreasing with increasing wind speed for most wind directions, but in southeasterly winds the mean concentrations are higher for high wind speeds than for low wind speeds.  相似文献   

13.
Modern epidemiology has shown that fluctuations of mortality data are statistically significantly correlated with fluctuations of ambient particulate matter (PM) concentration data. This relation cannot be confounded by exposure to PM of indoor origin because the concentrations of ambient PM are not correlated with concentrations of PM of indoor origin. It has been suggested, given the above understanding, that modern PM exposure measurements and analysis should create separate estimates of exposure to all PM of ambient origin and exposure to all PM of nonambient origin (primarily of indoor origin), and not exposure to total PM. This paper reviews the developments of the form of the general microenvironmental mass balance equation that can be utilized for estimating human exposure to PM of ambient origin and for estimating the portion of total PM exposure that is attributable to nonambient origin PM. The equation is perfectly general and can be applied to conditions of time-varying factors that influence exposure, such as rapidly changing air-exchange rates in a home as doors and windows are opened and closed, and turning on and off air cleaners in a home. It is suggested that this procedure be applied in exposure assessment studies and validated using independent techniques of estimating exposure to PM of ambient origin available in the literature.  相似文献   

14.
We developed regression equations to predict fine particulate matter (PM2.5) at air monitoring locations in the New York City region using data on nearby traffic and land use patterns. Three-year averages (1999–2001) of PM2.5 at US Environmental Protection Agency (EPA) monitors in the 28 counties including and surrounding New York City were calculated using daily data from the EPA's Air Quality Subsystem. As the secondary contribution to PM2.5 concentrations is lowest in the winter, we also calculated and modeled average winter 2000 PM2.5 to conduct a preliminary evaluation of model sensitivity to source contribution. Candidate predictor variables included traffic, land use, census and emissions data from local, state and national sources and were tabulated for a series of circular buffer regions at varying distances around the monitors using a geographic information system. In total, more than 25 variables at 5 different buffer distances were considered for inclusion in the model. Before evaluating the variables we removed several samples from the modeling for validation. For comparison and validation purposes we computed both a model using data for the full 28-county region as well as a more urbanized 9-county region. We found that traffic within a buffer of 300 or 500 m explains the greatest proportion of variance (37–44%) in all 3 models. Measures of urbanization, specifically population density, explain a significant amount of the residual variation (7–18%) after including a traffic variable. Finally, a measure of industrial land use further improves the 28-county and 9-county models based on the 3-yr annual averages, explaining an additional 4% and 11% of the variation, respectively, while vegetative land use improves the winter model explaining an additional 6%. The final models predicted well at validation locations. In total, the final land use regression models explain between 61% and 64% of the variation in PM2.5.  相似文献   

15.
This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potential of PAH and particulate matter (PM), brake-specific fuel consumption (BSFC), and power from diesel engines under transient cycle testing of six test fuels: premium diesel fuel (PDF), B100 (100% palm biodiesel), B20 (20% palm biodiesel + 80% PDF), BP9505 (95% paraffinic fuel + 5% palm biodiesel), BP8020 (80% paraffinic fuel + 20% palm biodiesel), and BP100 (100% paraffinic fuel; Table 1). Experimental results indicated that B100, BP9505, BP8020, and BP100 were much safer when stored than PDF. However, we must use additives so that B100 and BP100 will not gel as quickly in a cold zone. Using B100, BP9505, and BP8020 instead of PDF reduced PM, THC, and CO emissions dramatically but increased CO2 slightly because of more complete combustion. The CO2-increased fraction of BP9505 was the lowest among test blends. Furthermore, using B100, B20, BP9505, and BP8020 as alternative fuels reduced total PAHs and total benzo[a]pyrene equivalent concentration (total BaPeq) emissions significantly. BP9505 had the lowest decreased fractions of power and torque and increased fraction of BSFC. These experimental results implied that BP9505 is feasible for traveling diesel vehicles. Moreover, paraffinic fuel will likely be a new alternative fuel in the future. Using BP9505 instead of PDF decreased PM (22.8%), THC (13.4%), CO (25.3%), total PAHs (88.9%), and total BaPeq (88.1%) emissions significantly.  相似文献   

16.
Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters (Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.  相似文献   

17.
To understand the metal distribution characteristics in a rapidly urbanized area, we collected and analyzed particulate matter (PM) samples for the metal concentrations. Using our measurement data for various metal species, we examined both the extent of metal pollution in the study area and the seasonality in their distribution characteristics. Results showed that each metal exhibited their occurrences in diverse concentration ranges over several orders of magnitude such as the mean values ranging from minimum value of 0.07 (Be) to maximum value of 1633 ng m(-3) (Fe). In addition, the extent of metal pollution in the study area was in general comparable with those typically observed from a strongly polluted urban area, if comparison was made with the results of previous studies. Examinations of their temporal distribution patterns indicated that most of metals tend to exhibit seasonal peaks during winter (or spring) seasons, similarly to the observed pattern for PMs. Moreover to explain the factors regulating their mobilization properties, the data were analyzed through the application of correlation analysis. Results of our correlation analysis showed that most metals can exhibit strong positive correlations each other, while they tend to be inversely correlated with most of important meteorological parameters (including air temperature and precipitation). Based on the overall results of our study, we conclude that the site may be strongly impacted by man-made sources but that many characteristics of their cycling are not significantly different from those generally observed from natural environments.  相似文献   

18.
Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were monitored at two sites in northern Greece for an eight-month period in 1999. PCDD/F concentrations were close to the lower end of reported values worldwide. Excepting a few cases, the PCDD/Fs homologue profile was stable. The gaseous PCDD/F fractions calculated were found to account for a small percentage of the total concentrations (<2% for OCDD/Fs and HpCDD/Fs, while 30-35% for TCDFs). Particle-bound PCBs were also found at low concentrations which, however, were higher at the urban site. Calculations of the dry deposition of particulate PCDD/ Fs and PCBs gave mean values of 0.52 and 0.59 pg I-TEQ/m2/day of PCDD/Fs, while 242 and 74 pg/m2/day of sigmaPCBs for the urban and the semirural areas respectively. An anticorrelation of PCDD/F concentrations with ambient temperature was derived particularly for the lower chlorinated congeners. A weak association with winds of western and southern origin was also observed. Factor analysis and literature source profiles were employed to identify possible emission sources. It was appeared that the PCDD/F compositional pattern of TSP is influenced by mixed sources the most prominent being uncontrolled fires and car exhausts.  相似文献   

19.
Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg?1. Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.  相似文献   

20.
The San Joaquin Valley (SJV) in California has one of the most severe particulate air quality problems in the United States during the winter season. In the current study, measurements of particulate matter (PM) smaller than 10 microm in aerodynamic diameter (PM10), fine particles (PM18), and ultrafine particles (PM0.1) made during the period December 16, 2000-February 3, 2001, at six locations near or within the SJV are discussed: Bodega Bay, Davis, Sacramento, Modesto, Bakersfield, and Sequoia National Park. Airborne PM1.8 concentrations at the most heavily polluted site (Bakersfield) increased from 20 to 172 microg/m3 during the period December 16, 2000-January 7, 2001. The majority of the fine particle mass was ammonium nitrate driven by an excess of gas-phase ammonia. Peak PM0.1 concentrations (8-12 hr average) were approximately 2.4 microg/m3 measured at night in Sacramento and Bakersfield. Ultrafine particle concentrations were distinctly diurnal, with daytime concentrations approximately 50% lower than nighttime concentrations. PMO.1 concentrations did not accumulate during the multiweek stagnation period; rather, PMO.1 mass decreased at Bakersfield as PM1.8 mass was increasing. The majority of the ultrafine particle mass was associated with carbonaceous material. The high concentrations of ultrafine particles in the SJV pose a potential serious public health threat that should be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号