首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlling the confounding factors on cardiovascular diseases, such as long-time trend, calendar effect, and meteorological factors, a generalized additive model (GAM) was used to investigate the short-term effects of air pollutants (PM10, SO2, and NO2) on daily cardiovascular admissions from March 1st to May 31st during 2007 to 2011 in Lanzhou, a heavily polluted city in western China. The influences of air pollutants were examined with different lag structures, and the potential effect modification by dust storm in spring was also investigated. Significant associations were found between air pollutants and hospital admissions for cardiovascular diseases both on dust event days and non-dust event days in spring. Air pollutants had lag effects on different age and gender groups. Relative risks (RRs) and their 95% confidence intervals (CIs) associated with a 10 μg/m3 increase were 1.14 (1.04~1.26) on lag1 for PM10, 1.31 (1.21~1.51) on lag01 for SO2, and 1.96 (1.49~2.57) on lag02 for NO2 on dust days. Stronger effects of air pollutants were observed for females and the elderly (≥60 years). Our analysis concluded that the effects of air pollutants on cardiovascular admissions on dust days were significantly stronger than non-dust days. The current study strengthens the evidence of effects of air pollution on health and dust-exacerbated cardiovascular admissions in Lanzhou.  相似文献   

2.
Recent epidemiological and toxicological studies have shown associations between particulate matter and human health. However, the estimates of adverse health effects are inconsistent across many countries and areas. The stratification and interaction models were employed within the context of the generalized additive Poisson regression equation to examine the acute effects of fine particles on respiratory health and to explore the possible joint modification of temperature, humidity, and season in Beijing, China, for the period 2004–2009. The results revealed that the respiratory health damage threshold of the PM2.5 concentration was mainly within the range of 20–60 μg/m3, and the adverse effect of excessively high PM2.5 concentration maintained a stable level. In the most serious case, an increase of 10 μg/m3 PM2.5 results in an elevation of 4.60 % (95 % CI 3.84–4.60 %) and 4.48 % (95 % CI 3.53–5.41 %) with a lag of 3 days, values far higher than the average level of 0.69 % (95 % CI 0.54–0.85 %) and 1.32 % (95 % CI 1.02–1.61 %) for respiratory mortality and morbidity, respectively. There were strong seasonal patterns of adverse effects with the seasonal variation of temperature and humidity. The growth rates of respiratory mortality and morbidity were highest in winter. And, they increased 1.4 and 1.8 times in winter, greater than in the full year as PM2.5 increased 10 μg/m3.  相似文献   

3.
Guangzhou is a metropolitan in south China with unique pollutants and geographic location. Unlike those in western countries and the rest of China, the appearance of haze in Guangzhou is often (about 278 days per year on average of 4 years). Little is known about the influence of these hazes on health. In this study, we investigated whether short-term exposures to haze and air pollution are associated with hospital admissions in Guangzhou. The relationships between haze, air pollution, and daily hospital admissions during 2008–2011 were assessed using generalized additive model. Studies were categorized by gender, age, season, lag, and disease category. In haze episodes, an increase in air pollutant emissions corresponded to 3.46 (95 % CI, 1.67, 5.27) increase in excessive risk (ER) of total hospital admissions at lag 1, 11.42 (95 % CI, 4.32, 18.99) and 11.57 (95 % CI, 4.38, 19.26) increases in ERs of cardiovascular illnesses at lags 2 and 4 days, respectively. As to total hospital admissions, an increase in NO2 was associated with a 0.73 (95 % CI, 0.11, 1.35) and a 0.28 (95 % CI, 0.11, 0.46) increases in ERs at lag 5 and lag 05, respectively. For respiratory illnesses, increases in NO2 was associated with a 1.94 (95 % CI, 0.50, 3.40) increase in ER at lag 0, especially among chronic obstructive pulmonary disease. Haze (at lag1) and air pollution (for NO2 at lag 5 and for SO2 at lag3) both presented more drastic effects on the 19 to 64 years old and in the females. Together, we demonstrated that haze pollution was associated with total and cardiovascular illnesses. NO2 was the sole pollutant with the largest risk of hospital admissions for total and respiratory diseases in both single- and multi-pollutant models.  相似文献   

4.
Wu  Tingting  Ma  Yuan  Wu  Xuan  Bai  Ming  Peng  Yu  Cai  Weiting  Wang  Yongxiang  Zhao  Jing  Zhang  Zheng 《Environmental science and pollution research international》2019,26(15):15262-15272

Ambient particulate matter (PM) pollution has been linked to elevated mortality, especially from cardiovascular diseases. However, evidence on the effects of particulate matter pollution on cardiovascular mortality is still limited in Lanzhou, China. This research aimed to examine the associations of daily mean concentrations of ambient air pollutants (PM2.5, PMC, and PM10) and cardiovascular mortality due to overall and cause-specific diseases in Lanzhou. Data representing daily cardiovascular mortality rates, meteorological factors (daily average temperature, daily average humidity, and atmospheric pressure), and air pollutants (PM2.5, PM10, SO2, NO2) were collected from January 1, 2014, to December 31, 2017, in Lanzhou. A quasi-Poisson regression model combined with a distributed lag non-linear model (DLNM) was used to estimate the associations. Stratified analyses were also performed by different cause-specific diseases, including cerebrovascular disease (CD), ischemic heart disease (IHD), heart rhythm disturbances (HRD), and heart failure (HF). The results showed that elevated concentration of PM2.5, PMC, and PM10 had different effects on mortality of different cardiovascular diseases. Only cerebrovascular disease showed a significant positive association with elevated PM2.5. Positive associations were identified between PMC and daily mortality rates from total cardiovascular diseases, cerebrovascular diseases, and ischemic heart diseases. Besides, increased concentration of PM10 was correlated with increased death of cerebrovascular diseases and ischemic heart diseases. For cerebrovascular disease, each 10 μg/m3 increase in PM2.5 at lag4 was associated with increments of 1.22% (95% CI 0.11–2.35%). The largest significant effects for PMC on cardiovascular diseases and ischemic heart diseases were both observed at lag0, and a 10 μg/m3 increment in concentration of PMC was associated with 0.47% (95% CI 0.06–0.88%) and 0.85% (95% CI 0.18–1.52%) increases in cardiovascular mortality and ischemic heart diseases. In addition, it exhibited a lag effect on cerebrovascular mortality as well, which was most significant at lag6d, and an increase of 10 μg/m3 in PMC was associated with a 0.76% (95% CI 0.16–1.37%) increase in cerebrovascular mortality. The estimates of percentage change in daily mortality rates per 10 μg/m3 increase in PM10 were 0.52% (95% CI 0.05–1.02%) for cerebrovascular disease at lag6 and 0.53% (95% CI 0.01–1.05%) for ischemic heart disease at lag0, respectively. Our study suggests that elevated concentration of atmospheric PM (PM2.5, PMC, and PM10) in Lanzhou is associated with increased mortality of cardiovascular diseases and that the health effect of elevated concentration of PM2.5 is more significant than that of PMC and PM10.

  相似文献   

5.
Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 °C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 °C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality.  相似文献   

6.
Abstract

Temuco is one of the most highly wood-smoke-polluted cities in the world. Its population in 2004 was 340,000 inhabitants with 1587 annual deaths, of which 24% were due to cardiovascular and 11% to respiratory causes. For hospital admissions, cardiovascular diseases represented 6% and respiratory diseases 13%. Emergency room visits for acute respiratory infections represented 28%. The objective of the study presented here was to determine the relationship between air pollution from particulate matter less than or equal to 10 µm in aerodynamic diameter (PM10; mostly PM2.5, or particulate matter <2.5 µm in aerodynamic diameter) and health effects measured as the daily number of deaths, hospital admissions, and emergency room visits for cardiovascular, respiratory, and acute respiratory infection (ARI) diseases. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate Poisson regression model was fitted, controlling for trend, seasonality, and confounders for Temuco during 1998–2006. The results show that PM10 had a significant association with daily mortality and morbidity, with the elderly (population >65 yr of age) being the group that presented the greatest risk. The relative risk for respiratory causes, with an increase of 100 µg/m3 of PM10, was 1.163 with a 95% confidence interval (CI) of 1.057–1.279 for mortality, 1.137 (CI 1.096–1.178) for hospital admissions, and 1.162 for ARI (CI 1.144–1.181). There is evidence in Temuco of positive relationships between ambient particulate levels and mortality, hospital admissions, and ARI for cardiovascular and respiratory diseases. These results are consistent with those of comparable studies in other similar cities where wood smoke is the most important air pollution problem.  相似文献   

7.
Atmospheric particulate matter (PM) is hypothesized to increase the risk of myocardial infarction (MI). However, the epidemiological evidence is inconsistent. We identified 33 studies with more than 4 million MI patients and applied meta-analysis and meta-regression to assess the available evidence. Twenty-five studies presented the effects of the PM level on hospitalization for MI patients, while eight studies showed the effects on mortality. An increase in PM10 was associated with hospitalization and mortality in myocardial infarction patients (RR per 10 μg/m3?=?1.011, 95 % CI 1.006–1.016; RR per 10 μg/m3?=?1.008, 95 % CI 1.004–1.012, respectively); PM2.5 also increased the risk of hospitalization and mortality in MI patients (RR per 10 μg/m3?=?1.024, 95 % CI 1.007–1.041 for hospitalization and RR per 10 μg/m3?=?1.012, 95 % CI 1.010–1.015 for mortality). The results of the cumulative meta-analysis indicated that PM10 and PM2.5 were associated with myocardial infarctionwith the addition of new studies each year. In conclusion, short-term exposure to high PM10 and PM2.5 levels revealed to increase risk of hospitalization and mortality for myocardial infarction. Policy support of pollution control and individual protection was strongly recommended.  相似文献   

8.
ABSTRACT

Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10– 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5– 10 ozone exceedance days throughout the Washington, DC – Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160–800 mortalities (95% confidence interval (CI): 70–1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3–$6.6 billion (CI: $174 million–$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90–2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180–580) less hospital admissions for pneumonia, 570 (CI: 0–1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960–1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: ?280,350–963,190) less symptoms of asthma exacerbation during July 2011.

Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.  相似文献   

9.
Acute upper and lower respiratory infections are main causes of mortality and morbidity in children. Air pollution has been recognized as an important contributor to development and exacerbation of respiratory infections. However, few studies are available in China. In this study, we investigated the short-term effect of air pollution on hospital visits for acute upper and lower respiratory infections among children under 15 years in Ningbo, China. Poisson generalized models were used to estimate the associations between air pollution and hospital visits for acute upper and lower respiratory infections adjusted for temporal, seasonal, and meteorological effects. We found that four pollutants (PM2.5, PM10, NO2, and SO2) were significantly associated with hospital visits for acute upper and lower respiratory infections. The effect estimates for acute upper respiratory infections tended to be higher (PM2.5 ER = 3.46, 95% CI 2.18, 4.76; PM10 ER = 2.81, 95% CI 1.93, 3.69; NO2 ER = 11.27, 95% CI 8.70, 13.89; SO2 ER = 15.17, 95% CI 11.29, 19.19). Significant associations for gaseous pollutants (NO2 and SO2) were observed after adjustment for particular matter. Stronger associations were observed among older children and in the cold period. Our study suggested that short-term exposure to outdoor air pollution was associated with hospital visits for acute upper and lower respiratory infections in Ningbo.  相似文献   

10.
Abstract

In Asia, limited studies have been published on the association between daily mortality and gaseous pollutants of nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Our previous studies in Wuhan, China, demonstrated long-term air pollution effects. However, no study has been conducted to determine mortality effects of air pollution in this region. This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, a city with 7.5 million permanent residents during the period from 2000 to 2004. There are approximately 4.5 million residents in Wuhan who live in the city’s core area of 201 km2, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO2effects on mortality with the strongest effects on the same day. Every 10-μg/m3increase in NO2daily concentration on the same day was associated with an increase in nonaccidental (1.43%; 95% confidence interval [CI]: 0.87–1.99%), cardiovascular (1.65%; 95% CI: 0.87–2.45%), stroke (1.49%; 95% CI: 0.56–2.43%), cardiac (1.77%; 95% CI: 0.44–3.12%), respiratory (2.23%; 95% CI: 0.52–3.96%), and cardiopulmonary mortality (1.60%; 95% CI: 0.85– 2.35%). These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO2, where the NO2concentrations ranged from 19.2 to 127.4 μg/m3. SO2and O3were not associated with daily mortality. The exposure-response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO2and O3. We conclude that there is consistent evidence of acute effects of NO2on mortality and suggest that a no-threshold linear relationship exists between NO2and mortality.  相似文献   

11.
ABSTRACT

Recent evidence has implicated the fine fraction of particulate as the major contributor to the increase in mortality and morbidity related to particulate ambient levels. We therefore evaluated the impact of daily variation of ambient PM2.5 and other pollutants on the number of daily respiratory-related emergency visits (REVs) to a large pediatric hospital of Santiago, Chile. The study was conducted from February 1995 to August 1996. Four monitoring stations from the network of Santiago provided air pollution data. The PM2.5 24-hr average ranged from 10 to 111 μg/m3 during September to April (warm months) and from 10 to 156 μg/m3 during May to August (cold months). Other contaminants (ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2)) were, in general, low during the study period. The increase in REVs was significantly related to PM10 and PM2.5 ambient levels, with the relationship between PM2.5 levels and the number of REVs the stronger. During the cold months, an increase of 45 ìg/m3 in the PM2.5 24-hr average was related to a 2.7% increase in the number of REVs (95% CI, 1.1–4.4%) with a two-day lag, and to an increase of 6.7% (95% CI, 1.7–12.0%) in the number of visits for pneumonia with a three-day lag. SO2 and NO2 were also related to REVs. We conclude that urban air pollutant mixture, particularly fine particulates, adversely affect the respiratory health of children residing in Santiago.  相似文献   

12.
The practice of household bush burning in Grenada occurs frequently, though it is not well documented. The effects of the emissions from bush burning on respiratory health of the population have never been researched in Grenada. The goal of the study was to measure the frequency of bush burning and to investigate the relationship between bush burning practice and respiratory health in Grenada. In this cross-sectional study, a questionnaire was used to gather information from households in the parishes of St. George and St. Andrew, Grenada. In total, 225 participants were recruited and their responses on household bush burning and respiratory symptoms were analyzed. Self-reported data showed that the practice of bush burning was conducted by 43% (n = 96) of the participants as a regular practice (every month) and 86% (n = 192) of participants stated that their neighbors burn bush regularly. The most common lower respiratory symptom associated with bush burning was dry cough (31.4%). The participants who engage in the practice of bush burning had a statistically significant, higher prevalence of sinusitis symptoms (OR: 2.1, CI 95%: 1.1–3.9) and had slightly higher prevalence of cough (OR: 1.6, CI 95%: 0.9–2.8). Prevalences of physician-diagnosed asthma and sinusitis were 12.3% and 31.2%, respectively. Conducting studies on the health effects of bush burning in different settings and with different practices, such as the household bush burning in our current study, could help to improve public health in the developing world.

Implications:?Household disposal of waste is a significant issue in the developing world. In particular, residential bush burning is a common practice in tropical regions. This study demonstrates that the common practice of bush burning in the Caribbean is associated with respiratory symptoms and demonstrates the need for better management of residential yard waste. Burning of yard waste results in potentially significant exposures to air pollution and therefore alternative disposal practices need to be available. There is a need to increase awareness of the importance of avoiding exposure to the air pollutants generated during bush burning among communities in the Caribbean.  相似文献   

13.
Controversy exists as to whether working or living in the vicinity of a petroleum refinery (RF) increases the risk of haematological cancer (HC). The European Pollutant Release and Transfer Register obliges petroleum refineries to notify their emissions of toxic substances which include carcinogenic substances. Our objective is to determine if living in the proximity of an RF is associated with a greater risk of mortality due to HC in the census tracts (CTs) of the Spanish cities of Bilbao, Cartagena, Castellón, La Coruña, Huelva, and Santa Cruz de Tenerife. This is an ecological study of mortality in the years 1996–2007 which includes 968 CTs with 1,263,371 inhabitants. Exposure has been measured as the distance from the centroid of each CT to the RF. The Besag–York–Mollié autoregressive spatial model has been fitted by R-INLA to estimate the relative risk (RR) and 95 % credible intervals (95 % CrI) for distance in quintiles. The most distant quintile has been taken as the reference. A total of 2,574 persons died of HC. The distances from the CTs to RFs ranged from 0.5 to 22.5 km (median?=?7.6 km). All of the RRs for the quintiles of distances in Huelva were greater than 1. Statistically significant excess risk was shown in Cartagena in the nearest CT (1.8 to 6.8 km; RR?=?1.43, 95 % CrI 1.02 to 2.02). Radial effects have not been detected between the CT of residence and the petroleum RF in mortality due to HC in any of the cities.  相似文献   

14.
In Asia, limited studies have been published on the association between daily mortality and gaseous pollutants of nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Our previous studies in Wuhan, China, demonstrated long-term air pollution effects. However, no study has been conducted to determine mortality effects of air pollution in this region. This study was to determine the acute mortality effects of the gaseous pollutants in Wuhan, a city with 7.5 million permanent residents during the period from 2000 to 2004. There are approximately 4.5 million residents in Wuhan who live in the city's core area of 201 km2, where air pollution levels are highest, and pollution ranges are wider than the majority of the cities in the published literature. We used the generalized additive model to analyze pollution, mortality, and covariate data. We found consistent NO2 effects on mortality with the strongest effects on the same day. Every 10-microg/m3 increase in NO2 daily concentration on the same day was associated with an increase in nonaccidental (1.43%; 95% confidence interval [CI]: 0.87-1.99%), cardiovascular (1.65%; 95% CI: 0.87-2.45%), stroke (1.49%; 95% CI: 0.56-2.43%), cardiac (1.77%; 95% CI: 0.44-3.12%), respiratory (2.23%; 95% CI: 0.52-3.96%), and cardiopulmonary mortality (1.60%; 95% CI: 0.85-2.35%). These effects were stronger among the elderly than among the young. Formal examination of exposure-response curves suggests no-threshold linear relationships between daily mortality and NO2, where the NO2 concentrations ranged from 19.2 to 127.4 microg/m3. SO2 and O3 were not associated with daily mortality. The exposure-response relationships demonstrated heterogeneity, with some curves showing nonlinear relationships for SO2 and O3. We conclude that there is consistent evidence of acute effects of NO2 on mortality and suggest that a no-threshold linear relationship exists between NO2 and mortality.  相似文献   

15.
The Chihuahuan Desert region of North America is a significant source of mineral aerosols in the Western Hemisphere, and Chihuahuan Desert dust storms frequently impact the Paso del Norte (El Paso, USA/Ciudad Juarez, Mexico) metropolitan area. A statistical analysis of HYSPLIT back trajectory residence times evaluated airflow into El Paso on all days and on days with synoptic (non-convective) dust events in 2001–2005. The incremental probability—a measure of the areas most likely to have been traversed by air masses arriving at El Paso during dusty days—was only strongly positively associated with the region west–southwest of the city, a zone of known dust source areas. Focused case studies were made of major dust events on 15 April and 15 December 2003. Trajectories approached the surface and MM5 (NCAR/Penn State Mesoscale Model) wind speeds increased at locations consistent with dust sources observed in satellite imagery on those dates. Back trajectory and model analyses suggested that surface cyclones adjacent to the Chihuahuan Desert were associated with the extreme dust events, consistent with previous studies of dust storms in the Southern High Plains to the northeast. The recognition of these meteorological patterns serves as a forecast aid for prediction of dust events likely to impact the Paso del Norte.  相似文献   

16.
Over a twelve year period from 1996 to 2007, 76 dust storm related events (as days) in Hong Kong were selected for study, based on Aluminium and Calcium concentrations in PM10. Four of the 76 events reach episodic levels with exceedances of the Hong Kong air quality standards. The purpose of the study is to identify and characterize dust sources impacting Hong Kong.Global distribution of aerosols in NASA’s daily aerosol index images from TOMS and OMI, are compared to plots generated by NRL(US)’s Navy Aerosol Analysis and Prediction System. Possible source areas are assigned by computing air parcel backward trajectories to Hong Kong using the NOAA HYSPLIT model. PM10 and elemental data are analyzed for crustal mass concentrations and element mass ratios.Our analysis reveals that 73 out of the 76 dust events (96%) involve non-East Asian sources-the Thar, Central/West Asian, Arabian and Sahara deserts (Saharan influence is found in 63 events), which are previously not known to affect Hong Kong. The Gobi desert is the most frequent origin of dust, affecting 68 dust events while the Taklamakan desert impacts only 30 of the dust events. The impact of the Gobi desert in March and December is apparently associated with the northeast monsoon in East Asia.Our results also show a seasonal pattern in dust impact from both East Asian and more remote sources, with a maximum in March. Dust event occurrences are conspicuously absent from summer. Dust transport to Hong Kong is commonly associated with the passage of frontal low-pressure systems.The coarse size fraction of PM10 concentrations were, as indicated by Al, Ca and Fe concentrations, about 4–8 times higher during dust events. The mean Ca/Al ratios of sources involving the Taklamakan desert are notably higher than those for non-East Asian sources owing to a higher Ca content of most of the East Asian deserts. The Fe/Al ratios follow a similar trend.Contributions from the desert sources are grossly estimated where possible, by using the average Al abundance of 8% in the upper continental crust to convert the Al mass in the PM10 to dust concentrations. This is done for the six events identified with air mass purely of non-East Asian origin and the two events related only to the Thar/Arabian/Sahara deserts. Results reveal that the average contribution from the non-East Asian sources (including C/W Asia) is approximately 10% and, that from the Thar/Arabian/Sahara deserts is about 8%.  相似文献   

17.
To investigate the characteristics of Asian dust storm particles as single particles in Japan, we measured morphology, composition and concentration of single particles using Scanning Electron Microscope (SEM) coupled with an energy dispersive X-ray microanalyzer (EDX), particle induced X-ray emission (PIXE) and micro-PIXE. Particles were sampled in Kyoto, Japan from the middle of April to the end of July 1999. Mass concentration in Asian dust–storm events was roughly 3–5 times higher than that of the highest concentration measured in non-Asian dust storm seasons. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements such as Si, Fe, Ca and Al. Particles which have more than 40% Si content comprised nearly 50% of coarse single particles in Asian dust storm events. Main concentration range of Al in single Asian dust storm particles was 10–20%, and those of Ca and Fe were below 10%. Even though S and Cl in soils of the desert and loess areas in northwest of China were not detected, significant concentration of S and Cl in coarse fraction in Asian dust storm event were detected in single particles. Especially, the maximum concentration of S in Asian dust storm event was about 5 times higher than that in non-Asian dust storm days. Every single particle in coarse fraction existed as the mixing state of soil components and S. Good agreement between the results of SEM–EDX analysis and that of micro-PIXE analysis was obtained in this study.  相似文献   

18.
Windblown dust contributes to high PM2.5 concentrations   总被引:5,自引:0,他引:5  
The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM2.5. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2.5 constituted approximately 30% of the PM10 during the dust event days, compared with approximately 48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The "intermodal" region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 microns, was found to represent a significant fraction of PM2.5 (approximately 51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.  相似文献   

19.
To investigate short-term effects of ambient ozone exposure on mortality in Chinese cities, we conducted a meta-analysis of 10 effect estimates of 5 short-term studies, which reported associations between ambient ozone and mortality in Chinese mainland cities. And we estimated pooled effects by non-accidental mortality, cardiovascular mortality, and respiratory mortality. Combined estimates and their 95%CI were tested by RevMan 5, and Funnel plots were used for the bias analysis. For a 10 μg m−3 increase of maximum 8-h average concentration of ozone, the percent change for non-accidental mortality, cardiovascular mortality, and respiratory mortality were 0.42 (95%CI, 0.32–0.52%), 0.44% (95%CI, 0.17–0.70%) and 0.50% (95%CI, 0.22–0.77%), respectively. Compared with pooled estimates from other meta-analyses on ambient ozone-associated mortality, our pooled estimate for non-accidental mortality was slightly higher than previous ones and pooled estimate for cardiovascular mortality was consistent with others. However, we observed significantly positive association between ambient ozone and respiratory mortality, which were generally nonsignificant in earlier studies. By combining estimates from published evidence, a small but substantial association between ambient ozone level and mortality was observed in Mainland China.  相似文献   

20.
The distribution of air particulate mass and selected particle components (trace elements and polycyclic aromatic hydrocarbons (PAHs)) in the fine and the coarse size fractions was investigated at a traffic-impacted urban site in Thessaloniki, Greece. 76±6% on average of the total ambient aerosol mass was distributed in the fine size fraction. Fine-sized trace elemental fractions ranged between 51% for Fe and 95% for Zn, while those of PAHs were between 95% and 99%. A significant seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. Similar seasonal trend was exhibited by PAHs, whereas larger fine fractions in summer were shown by trace elements. The compositional signatures of fine and coarse particle fractions were compared to that of local paved-road dust. A strong correlation was found between coarse particles and road dust suggesting strong contribution of resuspended road dust to the coarse particles. A multivariate receptor model (multiple regression on absolute principal component scores) was applied on separate fine and coarse aerosol data for source identification and apportionment. Results demonstrated that the largest contribution to fine-sized aerosol is traffic (38%) followed by road dust (28%), while road dust clearly dominated the coarse size fraction (57%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号