首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile.For RANS simulations with the standard kε model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height.By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.  相似文献   

2.
A combined Lagrangian stochastic model with a micromixing sub-model is used to estimate the fluctuating concentrations observed in two wind tunnel experiments. The Lagrangian stochastic model allows fluid trajectories to be simulated in the inhomogeneous flow, while the mixing model accounts for the dissipation of fluctuations using the interaction by exchange with the mean (IEM) mechanism. The model is first tested against the open terrain, wind tunnel data of Fackrell, J.E. and Robins, A.E. [1982. Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. Journal of Fluid Mechanics 117, 1–26] and shows good agreement with the observed mean concentrations and fluctuation intensities. The model is then compared with the wind tunnel simulation of a two-dimensional street canyon by Pavageau, M. and Schatzmann, M. [1999. Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmospheric Environment 33, 3961–3971]. Despite the limitations of the k–ε turbulence scheme and the IEM mixing mechanism, the model reproduces the fluctuation intensity pattern within the canyon well. Overall, the comparison with both sets of wind tunnel experiments are encouraging, and the simplicity of the model means that predictions in a complex, three-dimensional geometry can be produced in a practicable amount of time.  相似文献   

3.
A theory is developed for calculating the entrapment of particles by a windbreak, with four results. (1) The fraction of particles in the oncoming flow which pass through the windbreak, or transmittance of the windbreak for particles (σ), is related to the optical porosity (τ). The very simple approximation σ=τ works well for most applications involving the interception of spray droplets by windbreaks. Results from a field experiment agree with the theoretical predictions. (2) A new equation for the bulk drag coefficient of a windbreak is tested against numerical, wind tunnel and field experiments. This enables the bleed velocity for the flow through the windbreak to be predicted in terms of the screen pressure coefficient (k) of the barrier. (3) The relationship between k and τ is different for a vegetative barrier than for a screen across a confined duct, implying a lower k for given τ. (4) The total deposition of particles to a windbreak is determined by a trade-off between particle absorption and throughflow, implying an optimum value of τ for maximum total deposition. For particles larger than 30 μm and vegetation elements smaller than 30 mm, this occurs near τ=0.2.  相似文献   

4.
This paper discusses about the quantitative effect of windbreak fences on wind velocity in the reclaimed land at Saemangeum in South Korea. Windbreak fences were constructed in the reclaimed land to reduce the wind velocity to prevent the generation and diffusion of dust. However, up to this time, no in-depth studies were conducted to quantitatively measure the effect of the windbreak fences on wind velocity thus an optimum windbreak structure is not yet determined. Using CFD simulations, the effects of fence porosity, fence height, and the distance between the adjacent fences were investigated. A wind tunnel experiment was initially conducted and data gathered were used to develop the CFD models. From the experiments and CFD simulations, the overall percentage difference of the measured velocities was 7.20% which is generally acceptable to establishing the reliability of the CFD models. The reduction effect on wind velocity was measured in between the adjacent fences up to a height of 0.6 m from the ground surface. In terms of porosity ( = 0, 0.2, 0.4, 0.6), 0.2 was found to be the optimum value. Conversely, the effect of fence height (0.6, 0.8 and 1.0 m) showed no significant difference; therefore, 0.6 m height is recommended. In addition, the reduction effect of distance between the adjacent fences (2, 4 and 6 m) on wind velocity having a 0.2 porosity has decreased to about 75% regardless of the distance. In the case of the reclaimed land in Saemangeum, a decrease of 75% can prevent the generation and diffusion of dusts. However, the source of dusts is very large. Therefore, constructing an array of windbreak with 6 m distance between them is deemed necessary.  相似文献   

5.
The aim of this work is to investigate atmospheric flow and dispersion of contaminants in the vicinity of single buildings under different stability conditions. The mathematical model used is based on the solution of equations of conservation of mass, linear momentum and energy with the use of a non-standard κ? turbulence model. The modifications proposed in the κ? model are the inclusion of the Kato and Launder correction in the production of turbulent kinetic energy and the use of a modified wall function. Results are presented of numerical simulations of dispersion around a cubical obstacle, under neutral, stable and unstable atmospheric conditions. Experimental data from wind tunnel and field trials obtained by previous authors are used to validate the numerical results. The numerical simulation results show a reasonable level of agreement with field and wind tunnel concentration data. The deviation between model results and field experimental data is of the same order as the deviation between field and wind tunnel data.  相似文献   

6.
Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier–Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H?=?1/2, 3/4, and 1) and wind directions (θ?=?90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H?=?1/2 and 1 and wind directions θ?=?112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.  相似文献   

7.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

8.
The dispersion of a tracer gas emitted from a short stack on a cubical building was investigated using field and wind tunnel experiments. Air samples were obtained on the roof and the leeward side of the building. Dilution data were compared with estimates of minimum dilution (Dmin) obtained with design formulas of Wilson/Chui/Lamb and Halitsky. The Halitsky model produced conservative predictions of Dmin. Estimates of Dmin obtained with the Wilson/Chui/Lamb model were in reasonable agreement with the field data. Wind tunnel dilution values were usually within a factor of two of the field data. The accuracy of the wind tunnel data improved as distance from the source increased. Wind tunnel dilution was found to be strongly dependent on the ratio of exhaust speed to wind speed, M, particularly for M values in the range of 2–4. This dependence is believed to be associated with the wind tunnel modelling of the stack exhaust, and is thus probably not a feature of the full-scale situation.  相似文献   

9.
The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.  相似文献   

10.
Flow and dispersion in an urban cubical cavity are numerically investigated using a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k? turbulence closure model. The urban cubical cavity is surrounded by flank walls that are parallel to the streamwise direction, called end-walls, as well as upstream and downstream walls. A primary vortex and secondary vortices including end-wall vortices are formed in the cavity. Because of the end-wall drag effect, the averaged mean-flow kinetic energy in the cavity is smaller than that in an urban street canyon that is open in the along-canyon direction. A trajectory analysis shows that the end-wall vortices cause fluid particles to move in the spanwise direction, indicating that flow in the cavity is essentially three-dimensional. The iso-surfaces of the Okubo–Weiss criterion capture cavity vortices well. The pollutant concentration is high near the bottom of the upstream side in the case of continuous pollutant emission, whereas it is high near the center of the primary vortex in the case of instantaneous pollutant emission. To get some insight into the degree of pollutant escape from the cavity according to various meteorological factors, extensive numerical experiments with different ambient wind speeds and directions, inflow turbulence intensities, and cavity-bottom heating intensities are performed. For each experiment, we calculate the time constant, which is defined as the time taken for the pollutant concentration to decrease to e?1 of its initial value. The time constant decreases substantially with increasing ambient wind speed, and tends to decrease with increasing inflow turbulence intensity and cavity-bottom heating intensity. The time constant increases as the ambient wind direction becomes oblique. High ambient wind speed is found to be the most crucial factor for ventilating the cavity, thus improving air quality in an urban cubical cavity.  相似文献   

11.
Comparisons are presented of the predictions of the atmospheric dispersion modelling system (ADMS) and wind tunnel data for plume dispersion from chemical warehouse fires. The focus of the comparisons is dispersion from structurally intact buildings with open roofs and dispersion of plumes flush with the ground without obstacles, however, dispersion from building shells and doors is also considered. Both buoyancy driven and momentum driven flows are treated, although emphasis is on buoyancy driven flows as these are generally more likely to occur in warehouse fires. The study shows that the ADMS building module is able to reproduce many of the features of dispersion observed in the wind tunnel. These include a recirculating region behind the building in which material may be trapped, a main wake which brings material down towards the surface, and appropriate sensitivity to the buoyancy and momentum of the emitted material, and the location of sources on the building roof. The comparisons suggest that the ADMS building model can be used to predict dispersion from the stages of fire development studied. The precise level of agreement depends (but not in a systematic way) on the buoyancy flux parameter FB, the momentum flux parameter FM and the number of roof lights. There are some significant differences between the wind tunnel boundary layer and the simulated atmospheric boundary layer in ADMS which have to be considered when making wind tunnel model comparisons. These relate mainly to the near surface where the wind tunnel underestimates turbulent velocities, the boundary layer height which in the wind tunnel corresponds to an atmospheric boundary layer depth of 82.5 m (atmospheric boundary layers are frequently an order of magnitude deeper), and the boundary layer top where the ADMS boundary layer is capped by an inversion and has low turbulence levels whereas the wind tunnel boundary layer has higher levels of turbulence and no capping inversion.  相似文献   

12.
The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures.

Implications: This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.  相似文献   


13.
Prediction accuracy of flow and dispersion around a cubic building with a flush vent located on its roof was examined using various k? models, and numerical results were compared with wind-tunnel data. Four types of turbulence models, i.e., the standard k? model, the RNG k? model, the k? model with Launder and Kato modification and the Realizable k? model were compared in this study. The standard k? model provided inadequate results for the concentration field, because it could not reproduce the basic flow structure, such as the reverse flow on the roof. However, revised k? models provided concentrations in better agreement with the experimental data. The effect of an oblique wind angle and vent locations on the prediction accuracy was also investigated. It was confirmed that the prediction accuracy of the velocity field strongly affected that of the concentration field. The RNG model showed general agreement with the experiment, and was the best of the turbulence models tested. However, it becomes clear that the results for all CFD models show poor prediction accuracy of concentration distribution at the side and leeward surfaces of the building since they all underestimate the concentration diffusion on these regions. The concentrations predicted by all CFD models were less diffusive than those of the experiment.  相似文献   

14.
The standard deviations of wind fluctuations in the horizontal and vertical directions, σθ and σφ, are now used in some pollution dispersion models to estimate the plume spread parameters σy and σz. Methods exist for estimating σθ and σφ when direct measurements are unavailable, using routine weather observations or wind measurements and temperature profiles from meteorological towers. In this paper such estimates are compared with direct measurements made at a height of 56 m, for a sampling time of 1 h, for a range of meteorological conditions. The work was carried out at a site in relatively irregular terrain. This was flat to rolling with a mixed surface cover within 1 km of the tower, with hills rising beyond that distance. Profile measurements were made with robust instruments rather than research grade sensors.Estimates of σφ made during the daytime agreed well with measurements, with a bias in the estimates of less than 0.4°. The r.m.s. differences between estimates and measurements were 1.1° (profile method) and less than 2° (routine weather observations method). Daytime σθ estimates were generally too low (bias 5–6°), although they were positively correlated with the measurements. At night σθ, was severely underestimated, and σφ was also underestimated.  相似文献   

15.
Two complementary methods, field experiments and physical modelling in a wind tunnel, have been used to investigate the dispersion of tracer-gas released from the ventilation system of a pig barn, under near-neutral stability conditions. In both cases, concentration fluctuations were measured and the deduced statistical results were compared. The choice of data processing applied to the time series of concentration was motivated by special issues in the assessment of odour annoyances: “where, how often, how long and how strong does it smell?” These features were described by the mean concentration distribution, the intermittency factor, the persistence and the 90-percentile. The good agreement between field and wind tunnel data confirmed the ability to replicate in wind tunnel the unsteady properties of a dispersion process, if the unsteady turbulent behaviour of the atmospheric boundary layer was properly modelled.A parametrical study of the influence on the dispersion process of the ratio between the exhaust velocity from the stack and the wind speed was then performed in wind tunnel. The fundamental outcome was that the near-field dispersion process under neutral stability conditions, despite the strong influence of the building wake, was for the most part driven by the meandering behaviour of the plume and not so much by the diffusion process.This study was also focused on the influence of the averaging time on the statistical results. The scatter generated by using dimensionless averaging times 200<Ta*<400 (used during field experiments) instead of Ta*→∞ (averaging time to ensure reproducible statistic results) was quantified in the wind tunnel. A degree of representativity of the results obtained from short-term samples, compared to fully converged statistical results was therefore assessed.  相似文献   

16.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

17.
The detrainment behaviour of contaminants in the wake of an isolated building was investigated in the field under atmospheric stability conditions ranging from very stable to very unstable. The model building used was a 2 m cube and two orientations were investigated, with the cube either normal or at 45° to the wind. Tracer gas was first entrained into the wake from a source located a short distance upwind of the cube, the gas being released continuously for a limited period in order to fill the wake. Thereafter, the source was switched off, and the concentration (measured using several fast-response gas detectors located in the wake) was observed to decay in an exponential manner. This procedure was repeated in a total of 118 experiments to provide confidence in statistics. The residence time (Td), which is defined as the time it takes for the concentration to decay to 1/e of its original value, was measured. The decay duration (t), which is the time it takes for the gas to become fully detrained from the wake, was found to be greater in stable atmospheric conditions, mainly due to the lower wind speeds and higher concentrations observed under these conditions. However, the non-dimensional residence time (τ) was found to be independent of atmospheric stability. The values of τ for a cube normal (τ=6.2) or at 45° to the flow (τ=9.5) are in very good agreement with values calculated using empirical formulae derived from wind tunnel experiments.  相似文献   

18.
The compact design of mechanical cooling towers necessitates that the plumes are issued into the cross-wind in close proximity. An improved understanding of the interaction of adjacent plumes is therefore required for better design of such cooling towers, which may lead to a reduction in their environmental impact. This paper presents the results of a numerical investigation into the interaction of two adjacent plumes in a cross-flow. The numerical model simulates small-scale wind tunnel experiments of a cooling tower arrangement. The computations are performed for three-dimensional, turbulent, buoyant and interacting plumes, and for a single plume for comparison. Two double-source arrangements, namely, tandem and side-by-side, with respect to the oncoming atmospheric boundary layer are considered. A low Reynolds number kε turbulence model is used with two discretisation schemes, hybrid and QUICK, and the results are compared. Comparisons are also made with the experimental results. The results show that the interaction of side-by-side plumes is dominated by the interaction of the rotating vortex pairs within the plumes. A tandem source arrangement leads to early merging and efficient rise enhancement. Comparisons of the predicted results with experimental data show good agreement for the plume rise.  相似文献   

19.
One of the most important meteorological input parameters for three-dimensional photochemical air pollution models is the mixing height h, which has a strong influence on the shape and intensity of the vertical diffusivity Kz and, as a consequence, on ground-level air concentrations of primary and secondary pollutants. A number of indirect algorithms for the estimate of h in nocturnal, stable conditions, when the mixing is dominated by mechanical turbulence, are reviewed and compared with mixing heights derived from wind (SODAR) and temperature (RASS) profiles measured in the Milan urban area during spring and summer 1996. Mixing heights derived from temperature soundings correlate positively with those derived from wind soundings only when a stable layer is superimposed to a quasi-adiabatic layer, while the correlation is very weak in the presence of a ground-based inversion. In general, indirect algorithms perform very poorly if compared with RASS-based estimates, and reasonably well if compared with SODAR-based estimates. Among the others, Benkley and Schulman (1979, Journal of Applied Meteorology 18, 772–780) method, which makes use of wind speed observed at 10 m height, and Nieuwstadt (1984, Boundary-Layer Meteorology 30, 31–55), which makes use of friction velocity and Monin–Obukhov length, give the best results.  相似文献   

20.
The use of windbreaks to reduce wind-blown coal dust at the POSCO Kwang-Yang open storage yards was studied using wind simulations on a scale model of the yards. Based on these simulation results, a full-scale wind fence was constructed on two sides of the yard. Here, we present results on the wind behavior both for the real yard and for the simulation results that guided its construction. Wind-tunnel simulations were used to study the effect of a porous wind fence of porosity ε=30% on the surface pressure and shear stress on coal piles using a 1/1200 model of the POSCO Kwang-Yang open storage yards. In addition, the shelter effects found in the model system were verified in field measurements on the full-scale system. The storage yard model was fully embedded in an atmospheric surface boundary layer over open terrain. The fence and coal pile model had the same height (12.2 mm) and Reynolds number (Re=1.6×104, based on the model height). The mean and fluctuating surface-pressure distributions on the coal piles, which are closely related to the dust emission from the surface, were measured for several directions of the oncoming wind. The wind directions pertinent to the study were determined by statistical analysis of seasonal wind data over the storage yard. A porous wind fence of porosity ε=30% was found to be useful for reducing the wind speed without the formation of a recirculating bubble behind the fence. In addition, the fence caught the wind-borne particles when it was located behind the coal piles. The wind fence reduced the pressure fluctuations and surface shear stress on the coal piles to less than half of the levels observed in the no fence case. To verify the effectiveness of the porous wind fence installed around the Kwang-Yang open storage yard, the local wind speed and the concentration of suspended particles were measured directly. Full-scale porous fences installed around the Kwang-Yang open storage yard greatly decreased the turbulence intensity of the wind over the coal piles and reduced the total suspension particles by 70–80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号