共查询到20条相似文献,搜索用时 0 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2007,41(24):5031-5043
Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers 7Be and 210Pb, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are ∼20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212 m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed ∼40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer 7Be. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to ∼3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》2007,41(24):5061-5076
The uptake of atmospheric ozone to the polar, year-round snowpack on glacial ice was studied at Summit, Greenland during three experiments in 2003, 2004, and 2005. Ozone was measured at up to three depths in the snowpack, on the surface, and above the surface at three heights on a tower along with supporting meteorological parameters. Ozone in interstitial air decreased with depth, albeit ozone gradients showed a high variation depending on environmental conditions of solar radiation and wind speed. Under low irradiance levels, up to 90% of ozone was preserved up to 1 m depth in the snowpack. Ozone depletion rates increased significantly with the seasonal and diurnal cycle of solar irradiance, resulting in only 10% of ozone remaining in the snowpack following solar noon during summertime. Faster snowpack air exchange from wind pumping resulted in smaller above-surface-to-within snowpack ozone gradients. These data indicate that the uptake of ozone to polar snowpack is strongly dependent on solar irradiance and wind pumping. Ozone deposition fluxes to the polar snowpack are consequently expected to follow incoming solar radiation levels and to exhibit diurnal and seasonal cycles. The Summit observations are in stark contrast to recent findings in the seasonal, midlatitude snowpack [Bocquet, F., Helmig, D., Oltmans, S.J., 2007. Ozone in the mid-latitude snowpack at Niwot Ridge, Colorado. Arctic, Antarctic and Alpine Research, in press], where mostly light-independent ozone behavior was observed. These contrasting results imply different ozone chemistry and snowpack–atmosphere gas exchange in the snow-covered polar, glacial conditions compared to the temperate, mid-latitude environment. 相似文献
3.
《Atmospheric environment (Oxford, England : 1994)》2007,41(24):5101-5109
Experiments were performed at Summit, Greenland (72°34′ N, 38°29′ W) to investigate hydroxyl mixing ratios in the sunlit surface snowpack (or firn). We added a carefully selected mixture of hydrocarbon gases (with a wide range of hydroxyl reactivities) to a UV and visible light transparent flow chamber containing undisturbed natural firn. The relative decrease in mixing ratios of these gases allowed estimation of the lower limit mixing ratio of hydroxyl radicals in the near-surface firn pore spaces. Hydroxyl mixing ratios in the firn air followed a diurnal cycle in summer 2003 (10–12 July), with peak values of more than 3.2×106 molecules cm−3 between 13:00 and 16:00 local time. The minimum value estimated was 1.1×106 molecules cm−3 at 20:00 local time. Results during spring of 2004 showed lower, but rapidly increasing, peak hydroxyl mixing ratios of 1.1×106 molecules cm−3 in the early afternoon on 15 April and 1.5×106 molecules cm−3 on 1 May. Our firn hydroxyl estimates were similar to directly measured above-snow ambient levels during the spring field season, but were only about 30% of ambient levels during summer. 相似文献
4.
5.
6.
《Atmospheric environment (Oxford, England : 1994)》2007,41(24):5122-5137
The first measurements of peroxy (HO2+RO2) and hydroxyl (OH) radicals above the arctic snowpack were collected during the summer 2003 campaign at Summit, Greenland. The median measured number densities for peroxy and hydroxyl radicals were 2.2×108 mol cm−3 and 6.4×106 mol cm−3, respectively. The observed peroxy radical values are in excellent agreement (, ) with highly constrained model predictions. However, calculated hydroxyl number densities are consistently more than a factor of 2 lower than the observed values. These results indicate that our current understanding of radical sources and sinks is in accord with our observations in this environment but that there may be a mechanism that is perturbing the (HO2+RO2)/OH ratio. This observed ratio was also found to depend on meteorological conditions especially during periods of high winds accompanied by blowing snow. Backward transport model simulations indicate that these periods of high winds were characterized by rapid transport (1–2 days) of marine boundary layer air to Summit. These data suggest that the boundary layer photochemistry at Summit may be periodically impacted by halogens. 相似文献
7.
8.
Concentrations and sources of carbonaceous aerosol in the atmosphere of Summit,Greenland 总被引:1,自引:0,他引:1
Erika von Schneidemesser James J. Schauer Gayle S.W. Hagler Michael H. Bergin 《Atmospheric environment (Oxford, England : 1994)》2009,43(27):4155-4162
High-volume PM2.5 samples were collected at Summit, Greenland for approximately six months from late May through December of 2006. Filters were composited and analyzed for source tracer compounds. The individual organic compounds measured at Summit are orders of magnitude smaller than concentrations measured at other sites, including locations representative of remote oceanic, and remote and urban continental aerosol. The measured tracers were used to quantify the contribution of biomass burning (0.6–0.9 ng C m?3), vegetative detritus (0.3–0.9 ng C m?3), and fossil fuel combustion (0.1–0.8 ng C m?3) sources, 4% of OC total, to atmospheric organic carbon concentrations at the remote location of Summit, Greenland. The unapportioned organic carbon (96%) during the early summer period correlates well with the fraction of water soluble organic carbon, indicating secondary organic aerosol as a large source of organic carbon, supported by the active photochemistry occurring at Summit. To the author's knowledge, this paper represents the first source apportionment results for the polar free troposphere. 相似文献
9.
10.
《Atmospheric environment (Oxford, England : 1994)》2007,41(36):7806-7820
An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2+RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7–9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2+RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute ∼25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(1D)+H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O) are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HOx sink involves the HO2+HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the O(1D)+H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx, the SP HOx sinks are dominated by HOx–NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible. 相似文献
11.
12.
H.B. Singh B.E. Anderson W.H. Brune C. Cai R.C. Cohen J.H. Crawford M.J. Cubison E.P. Czech L. Emmons H.E. Fuelberg G. Huey D.J. Jacob J.L. Jimenez A. Kaduwela Y. Kondo J. Mao J.R. Olson G.W. Sachse S.A. Vay A. Weinheimer A. Wisthaler 《Atmospheric environment (Oxford, England : 1994)》2010,44(36):4553-4564
We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO2 and N2O but indicate substantially larger emissions of CH4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes. 相似文献
13.
In this paper, the semi-enclosed bay named Tolo Harbour and Channel in Hong Kong, which was frequently attacked by red tides, was used as a case study. Data sets related to marine water quality, river nutrients, and meteorological conditions recorded between 1988 and 1999 were chosen for statistical analysis. A multivariate analysis showed that algal growth, represented by the chlorophyll a concentration, had obvious spatial and temporal variations in the study area. The chlorophyll a concentration had a consistently decreasing trend from the inner part of the Harbour and surface waters to the outer part and bottom waters. The temporal variations had a markedly seasonal variation with high bioproductivity in spring and winter. There were long-term fluctuations in the chlorophyll a concentration with a high-low-high pattern in the study period. Nutrients and hydrological and meteorological conditions were important factors of algal bloom. Besides nitrogen, which was the most critical factor of algal bloom for the whole water body, total phosphorus in the surface waters and phosphate (PO4) and silica (SiO2) in the bottom waters also showed strongly positive or negative correlations with the chlorophyll a level. For the meteorological conditions, global solar radiation was the key factor of massive algal bloom in the study period, while rainfall and wind direction were the most important factors of seasonal variation. 相似文献
14.
Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies 总被引:10,自引:0,他引:10
Sailesh N. Behera Mukesh Sharma Viney P. Aneja Rajasekhar Balasubramanian 《Environmental science and pollution research international》2013,20(11):8092-8131
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3. 相似文献
15.
Khoi Nguyen Alexandre Caboussat Donald Dabdub 《Atmospheric environment (Oxford, England : 1994)》2009,43(40):6287-6295
Air quality models compute the transformation of species in the atmosphere undergoing chemical and physical changes. The numerical algorithms used to predict these transformations should obey mass conservation and positive definiteness properties. Among all physical phenomena, the chemical kinetics solver provides the greatest challenge to attain these two properties. In general, most chemical kinetics solvers are mass conservative but not positive definite. In this article, a new numerical algorithm for the computation of chemical kinetics is presented. The integrator is called Split Single Reaction Integrator (SSRI). It is both mass conservative and positive definite. It solves each chemical reaction exactly and uses operator splitting techniques (symmetric split) to combine them into the entire system.The method can be used within a host integrator to fix the negative concentrations while preserving the mass, or it can be used as a standalone integrator that guarantees positive definiteness and mass conservation. Numerical results show that the new integrator, used as a standalone integrator, is second order accurate and stable under large fixed time steps when other conventional integrators are unstable. 相似文献
16.
《Atmospheric environment (Oxford, England : 1994)》2007,41(24):5020-5030
The activity of the natural radionuclide tracers 7Be and 210Pb has been determined in bulk aerosol samples collected over 2-day intervals for nearly five full years at Summit, Greenland. Year-round sampling was conducted in three campaigns; summer 1997 to summer 1998, summer 2000 to summer 2002, and summer 2003 to present. As in previous summer campaigns at Summit, and a year-round investigation at Dye 3, variations in the activities of the tracers on short time scales were strongly correlated despite the upper troposphere/lower stratosphere source of 7Be and the continental surface source of 222Rn (precursor of 210Pb). This behavior is attributed to boundary layer dynamics exerting the dominant control on activities in air just above the ice sheet. Aerosols and associated species are depleted from the boundary layer above the snow when a strong inversion limits exchange with the free troposphere. Episodic weakening of the inversion allows ventilation of the boundary layer. This cycle drives simultaneous decreases and increases in the radionuclide tracers. The correlation between 7Be and 210Pb on seasonal and annual bases was found to be stronger than at Dye 3, and the average activity of 7Be was lower at Summit despite the higher elevation (3.0 versus 2.5 km). These observations indicate that the boundary layer at Summit is more effectively isolated than at Dye 3. The activity of 7Be at Summit peaked in June or July all 5 years, closely following the seasonality of stratospheric injection of 7Be into the Arctic troposphere (based on seasonality of the 10Be/7Be ratio previously measured at Alert, NWT). This suggests that when the boundary layer at Summit is replenished by ventilation, it receives air reflecting the composition of the mid and upper troposphere. 相似文献
17.
18.
Brown DJ 《Environmental pollution (Barking, Essex : 1987)》1988,54(3-4):275-284
In this paper the relative importance of NO3- and SO4(2-) as anions in oligotrophic surface waters and evidence that NO3 concentrations have been increasing in recent decades in reviewed. The relationship between NO3- and the concentrations of cations (H+ and Al3+) known to be harmful to aquatic biota is also discussed. It is generally concluded that although direct proof of an association is lacking, circumstantial evidence suggests that atmospheric input of nitrogen to soils on certain 'sensitive' geologies may be having consequences for surface waters and the biota living in them, especially at certain times of the year, e.g. snowmelt. 相似文献
19.
César Oliveira Casimiro Pio Alexandre Caseiro Patrícia Santos Teresa Nunes Hongjun Mao Lakhumal Luahana Ranjeet Sokhi 《Atmospheric environment (Oxford, England : 1994)》2010,44(26):3147-3158
At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol.With these objectives, the ionic and elemental composition of the fine (PM2.5) and coarse (PM2.5–10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer.Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28–48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18–28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site.Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension. 相似文献