首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at six sampling sites in the heating (February to March 2001) and nonheating (August to September 2001) periods in an industrial city in Northern China. Thirteen PAHs were measured. The total average concentrations (nanograms per meter cubed) of PAHs ranged between 78.93 and 214.63 during the heating period and from 31.48 to 102.26 in the nonheating period. Benzo(a)pyrene occurred at the highest level at a site near an industrial area but occurred at low concentrations far from the city center and industrial areas. In addition, ambient PAH profiles were studied. The five and six-ring species occurred in high fractions at the sampling site. By diagnostic ratio analysis, the major source at each sampling site in the city was coal combustion in the heating period; in the nonheating period, the major sources were relatively complex. Finally, the similarities among the six regions were assessed by principal component analysis, cluster analysis, and coefficient of divergence. These multivariate statistical analyses produced similar results, which agreed with the results from the diagnostic ratio analysis.  相似文献   

2.
Vapor- and particulate-phase polycyclic aromatic hydrocarbon (PAH) samples were continuously collected at an urban site in Dalian, China, during the heating and non-heating period. There is strong temperature dependence and obvious seasonal trend for atmospheric PAHs, and significant positive correlations of atmospheric PAHs with SO2 and CO concentrations were observed. Factor analysis model with non-negative constraints (FA–NNC) combined with local and literature PAH source fingerprints was successful in source identification of particulate PAHs in the atmospheric samples. The results suggested that, in heating period, the main pollution sources were identified as coal-fired boiler emission (56%), residential coal combustion (33%) and traffic emissions (11%). As for non-heating period, the main sources were gasoline engine emission, traffic tunnel emission and coal-fired power plant, and the overall source contributions of traffic emission (gasoline engine + traffic tunnel) were 79% and coal-fired power plant 21%. The current results support our previous study and provide new insights. This can be the first attempt to quantitatively apportion air organic pollutants using receptor models combined with local source fingerprints. The source fingerprints can be used as reference data for source apportionment of atmospheric PAHs of China.  相似文献   

3.
Samples of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) were collected at three sampling stations (Xiaomai Island, Laohutan, and Zhangzi Island) in the north Yellow Sea, China during November 2008 and September 2009 to study their atmospheric transport potential and the gas/particle distributions. The composition of PAHs was dominated by gaseous compounds. The percentages of the particle-phase PAHs to the total concentrations were found to be higher during the heating period than the non-heating period. The ratios of naphthalene and acenaphthene to phenanthrene, chrysene and dibenzo(a,h)anthracene showed an increasing trend from Xiaomai Island to Zhangzi Island, which can be called as the local atmospheric distillation of PAHs. Gas/particle partitioning coefficients (K p) and their relationship with the sub-cooled liquid vapor pressures (pºL) of PAHs were investigated. The regressions of logK p versus logpºL gave significant correlations for all samples of the three sites with r 2 values in the range 0.56–0.66 (p?<?0.01). Both Junge–Pankow adsorption model and octanol–air partition coefficient absorption model tended to underestimate the sorption for most PAHs, but the absorption model appeared to be more suitable for predicting the particle fraction of PAHs than the Junge–Pankow model.  相似文献   

4.
PAHs and PCBs were collected simultaneously indoors and outdoors at eight non-smoking homes located in four buildings in high-traffic areas of Rome. The purpose was to evaluate the relevance of indoor air in contributing to the overall exposure of the urban population. The vertical distribution was also investigated by collecting outdoor samples at both road and roof level, and indoor samples in both a high and a low floor flat of each building. At one coal-heated building, samples were collected during both the heating and the non-heating season. No evident PAH source was present indoors. Indoor and outdoor daily concentrations of benzo[a]pyrene (BaP) ranged, respectively, 0.1–4.6 ng m−3 and 0.7–2.3 ng m−3. With the heating on, indoor PAH concentrations equalled or exceeded those outdoors, with BaP indoor/outdoor ratios up to 4; during the warm season, ratios decreased to 0.2–0.6. Indoor PAHs at the low floors exceeded the high-floor ones when the heating was off (vehicle exhausts being the dominant source), while being equal or lower with the heating on; the vertical gradient of indoor PAHs between different floors was within a factor of 2. Outdoor PAHs at roof level were 20–70% of those at road level, which in turn exceeded those at the medium-traffic station up to a factor of 4. The outdoor concentrations of Σ6 indicator PCBs ranged 0.1–1.6 ng m−3. Indoor PCB concentrations exceeded those outdoors by an approximate factor of 2–50. No vertical gradient was observed. The results indicated that indoor air may contribute to the overall exposure to PAHs and PCBs more than the urban air. They were also consistent with recent findings suggesting that indoor air can be a relevant source of PCBs for outdoor air.  相似文献   

5.
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and cloud/fog water samples were collected at Mount Taishan in an autumn–winter period, and were analyzed by GS-MS. Higher molecular weight PAHs (4–6 rings) predominated in PM2.5 samples, whereas lighter PAH compounds contributed 61.71% of the total PAH concentration in cloud/fog samples. Particles tended to contain more PAHs and have a more intensive influence on the atmospheric environment on colder days. During cloud/fog events, the scavenging ratio based on PAHs associated with particles was estimated to be about 13.45%. PAHs in PM2.5 samples had a significant positive relationship with CO and SO2, suggesting that PAHs, SO2, and CO may originated from the same sources, such as residential coal combustion activities. Diagnostic ratio analysis and factor analysis indicated that the sources of PAHs were mainly from coal combustion during this period.  相似文献   

7.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

8.
Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is limited by the lack of environmental exposure data among different subpopulations. To assess the exposure cancer risk of particulate carcinogenic polycyclic aromatic hydrocarbon pollution for the elderly, this study conducted a personal exposure measurement campaign for particulate PAHs in a community of Tianjin, a city in northern China. Personal exposure samples were collected from the elderly in non-heating (August–September, 2009) and heating periods (November–December, 2009), and 12 PAHs individuals were analyzed for risk estimation. Questionnaire and time-activity log were also recorded for each person. The probabilistic risk assessment model was integrated with Toxic Equivalent Factors (TEFs). Considering that the estimation of the applied dose for a given air pollutant is dependent on the inhalation rate, the inhalation rate from both EPA exposure factor book was applied to calculate the carcinogenic risk in this study. Monte Carlo simulation was used as a probabilistic risk assessment model, and risk simulation results indicated that the inhalation-ILCR values for both male and female subjects followed a lognormal distribution with a mean of 4.81?×?10?6 and 4.57?×?10?6, respectively. Furthermore, the 95 % probability lung cancer risks were greater than the USEPA acceptable level of 10?6 for both men and women through the inhalation route, revealing that exposure to PAHs posed an unacceptable potential cancer risk for the elderly in this study. As a result, some measures should be taken to reduce PAHs pollution and the exposure level to decrease the cancer risk for the general population, especially for the elderly.  相似文献   

9.
In this study, plates for downward flux and upward flux were used to measure atmospheric dry deposition fluxes for particulate mass and polycyclic aromatic hydrocarbons (PAHs) in TERC (Tsukuba), Japan. Ambient particles concentrations were also collected using a high-volume air sampler, and ambient particle size distributions between 0.01 μm and 13.1 μm were measured using a low-pressure cascade impactor to characterise the PAHs levels and dry deposition. The results indicated that the average cumulative fraction of dry deposition flux for particles and PAHs which attached with them was caused by the particle size of greater than 1.2-6.3 μm (97%).  相似文献   

10.
Honda K  Mizukami M  Ueda Y  Hamada N  Seike N 《Chemosphere》2007,68(9):1763-1771
The residue level of 21 polycyclic aromatic hydrocarbons (PAHs) and the temporal changes in this level were investigated in paddy soils collected from particular experimental sites in Japan from 1959 to 2002. The average total PAH concentration in all the samples was 496 microg kg(-1), and it ranged from 52.9 to 2180 microg kg(-1). The residue level of the PAHs was the highest during the 1960s, rapidly decreased during the 1970s, and remained almost constant thereafter. Relatively high PAH concentrations were observed in soils from areas that experienced heavy snowfall and that had relatively low air temperature. The predominant PAHs were phenanthrene, fluoranthene, naphthalene, and pyrene, and their concentration overall and in relation to that of the total PAHs decreased each year since the 1960s. Similarities in the PAH profiles among the locations were determined using the concentration correlation matrix and cluster analysis, and ratios of the levels of specific PAH pairs were also calculated to determine their origin. The collected data suggested that the origins of soil PAHs changed chronologically from the burning of agricultural wastes such as stubble before the mid-1970s to the combustion of fossil fuel and its secondary products after the mid-1970s.  相似文献   

11.
Fang GC  Wu YS  Chang CN  Ho TT 《Chemosphere》2006,64(7):1233-1242
Fine (PM(2.5)) and Coarse (PM(2.5-10)) particulates concentrations of ambient air particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously from February 2004 to January 2005 at the Taichung Harbor (TH) sampling site near Taiwan of central Taiwan. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on quartz filters, the collected sample used soxhlet analytical method extracted with a dichloromethane (DCM)/n-hexane mixture (50/50, v/v) for 24h, and then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. The results indicated that vehicle emissions, coal combustion, incomplete combustion and pyrolysis of fuel and oil burning were the main source of PAHs near Taiwan Strait of central Taiwan. Diagnostic ratio and principal component analysis (PCA) were also used to characterize and identify PAHs emission source in this study.  相似文献   

12.
Total suspended particle (TSP) was collected and analyzed at rural and urban sites in Tianjin, China during the domestic heating season (from 15 November to 15 March) of 2003/4 for n-alkanes and 16 polycyclic aromatic hydrocarbons (PAHs). The normalized distribution of n-alkanes with the peak at C22, C23, C24 or C25 suggested that fossil fuel utilization was the major source of particulate n-alkanes at both sites. PAHs normalized distribution for each sample was similar and the higher molecular weight PAH dominated the profile (around 90%) indicating a stronger combustion source at both sites. Precipitation and wind were the most important meteorological factors influencing TSP and PAHs atmospheric concentrations. In the urban area the emission height had significant influence on PAHs levels at different heights under the relative stable atmospheric conditions. Coal combustion was the major source for TSP-bound PAHs at both sites based on some diagnostic ratios.  相似文献   

13.
To study the mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006, both TSP and PM2.5 samples were collected at three sites of northern China in addition to the dry deposition samples collected in an episode in Beijing. 23 elements, 15 ions, and 16 PAHs in each sample were analyzed. The two dust storms in northern China were observed in April 8–10 (DS1) and April 16–18 (DS2). Compared to DS2, DS1 was weaker and more polluted with stronger mixing between crustal and pollutant aerosols during their long-range transport. The concentrations of pollution species, e.g. pollution elements, ions, and PAHs were higher in DS1 than that in DS2, while the crustal species showed adverse variation. The correlation between chemical species and Al and between PAH(4) and PAH(5,6) further confirmed the stronger chemical transformation and aerosol mixing in DS1 than that in DS2. Back trajectory and chemical analysis revealed that in DS1 the air masses at Beijing were mostly from southern or southwestern direction at lower altitude with much more pollution, while in DS2 the air masses were mostly from the northwestern and northern direction with dust mainly, which explained why there was a stronger mixing of dust with pollution aerosol in DS1 than that in DS2 over Beijing.  相似文献   

14.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

15.
Various tissues of rice plants were sampled from a PAH contaminated site in Tianjin, China at different growth stages of the ripening period and analyzed for PAHs. PAHs were much higher in roots than in the exposed tissues. Grains and internodes accumulated much smaller amounts of PAHs than leaves, hulls or ear axes. No specific gradient trends along roots, stem, ear axes, and grains were observed, suggesting that systematic translocation among them is unlikely. Over the ripening period, PAH concentrations were increased in rice roots and decreased in most above-ground tissues. Significant correlations between PAH and lipid contents can only be observed during full mature stage. The spectra of individual PAH compounds in rice organs including roots were similar to those in air, rather than those in soil. There was also a significant correlation between bioconcentration factor (BCF, plant over air) and octanol/air partitioning coefficient (Koa).  相似文献   

16.
Yang HH  Chen CM 《Chemosphere》2004,56(10):879-887
The application of a chemical mass balance air pollution model to ambient measurements of polycyclic aromatic hydrocarbons (PAHs) is presented. Sixteen air samples were collected at seven sites in a suburban area in Taiwan and analyzed for the concentration of 21 compounds between July 2001 and September 2001. Each ambient sample was evaluated for the PAH contribution from six sources (heavy oil combustion, natural gas combustion, coal combustion, diesel combustion, vehicles and municipal solid waste incinerator). Average predictions agree well with the emission inventory. By this method, the average contributions are 49%, 14%, 22%, 12%, and 2% from vehicles, heavy oil combustion, natural gas combustion, coal combustion and diesel combustion at these seven receptors. By far, vehicles are the major PAH emission sources and municipal solid waste incinerator is a minor contributor. The calculated result of particulate PAHs is compared with that of total (gaseous and particulate) PAHs. The estimate based on total PAHs is better than the estimate based on particulate PAHs only. Contributions of eight low reactive PAHs for the same emission sources and receptors were calculated. Atmospheric reactivity seems not a problem for source apportionment in this study.  相似文献   

17.
Ambient air and deposition samples were collected in the period of July 2004-May 2005 in an industrial district of Bursa, Turkey and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds. The overall average of fourteen bulk deposition fluxes for PAHs was 3300+/-5100 ng m(-2) d(-1). PAH depositions showed a seasonal variation and they were higher in winter months. This was probably due to increases in residential heating activities and decreases in atmospheric mixing layer levels. Ambient air samples, measured with a high volume air sampler, were collected from the same site. The average total concentration including gas and particulate phase was about 300+/-420 ng m(-3) and it was in the range of previously reported values. Some of the ambient air and bulk deposition samples were collected simultaneously in dry periods. Both concurrently measured values were used to calculate the dry deposition velocities whose overall average value was 0.45+/-0.35 cm s(-1).  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) were determined in the ambient air of six towns in N. Greece. This paper presents the variability of the particle-bound PAHs concentrations and the particle PAH content during the cold and the warm months. Correlations of total PAHs with other atmospheric pollutants were largely different among towns indicating that the relative contribution of emission sources is different in each location. In the warm months PAHs were significantly correlated with vehicular pollutants thus suggesting traffic as the major PAH emmitting source. The same was also deduced from the comparison of the ambient PAH profiles to the profiles of particular sources. The contribution of residential heating was significant in most towns during winter. Principal component analysis of the data did not result in a clear distinction between towns thus suggesting that all are influenced by similar source types. Finally, the risk associated with the inhallation of carcinogenic PAHs in each town was estimated and compared to the risk from more urbanized/industrialized sites in N. Greece.  相似文献   

19.
The concentrations of trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed to total suspended particulate (TSP) and finer fractions of airborne particulate matter (PM) were determined from a site in the centre of Athens (Greece), which is characterized by heavy local traffic and is densely populated, during the winter and summer periods in 2003-2004. Also, we collected and analyzed samples of diesel and gasoline exhaust particles from local vehicles (buses, taxis and private cars) and from chimney exhaust of residential central heating appliances. A seasonal effect was observed for the size distribution of aerosol mass, with a shift to larger fine fractions in winter. The most commonly detected trace metals in the TSP and PM fractions were Fe, Pb, Zn, Cu, Cr, V, Ni and Cd and their concentrations were similar to levels observed in heavily polluted urban areas from local traffic and other anthropogenic emissions. Analysis of 16 PAHs bound to PM showed that they are mostly traffic related. In general, the fine particulate PAHs concentrations were higher than coarse particles. The most common PAHs in PM(10.2) and PM(2.1) were pyrene, phenanthrene, acenapthylene and fluoranthene, which are associated with diesel and gasoline exhaust particles. The results of this study underlined the importance of local emission sources, especially vehicular traffic, central heating and other local anthropogenic emissions. Compared with other big cities, Athens has much higher levels of airborne particles, especially of the finer fractions PM(10) and PM(2.5), correlated with traffic-related air pollution.  相似文献   

20.
This study analyzed the seasonal distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric environment of Tamil Nadu, India. Passive air sampling was performed at 32 locations during the period from April 2009 to January 2010, and PAHs were quantified using a gas chromatograph-mass spectrometer. Analysis showed that the concentrations of PAHs were in the range of 5–47.5 ng/m3 with uniform distribution in urban areas in all seasons. Pre-monsoon season showed the highest cumulative concentration of PAHs in both agricultural and coastal areas. Among PAHs, phenanthrene, fluoranthene, and pyrene levels were found to be predominant in all the samples, contributing up to 36%, 35.5%, and 24.5% of total PAHs, respectively. The signature of the PAHs obtained through diagnostic ratio and principal component analysis revealed that diesel emissions was the probable source of PAHs in all locations. Based on Word Health Organization guidelines, the human lung cancer risk due to observed level of PAH concentration (i.e., PAHs exposure) is meager. However, the risk is predicted to be more in the coastal area during summer (18 individuals among 0.1 million people). To the knowledge of these authors, this report is the first on the seasonal analysis of PAHs using passive air sampling in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号