首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fine particulate matter (PM2.5) mass was determined on a continuous basis at the Salt Lake City Environmental Protection Agency Environmental Monitoring for Public Awareness and Community Tracking monitoring site in Salt Lake City, UT, using three different monitoring techniques. Hourly averaged PM2.5 mass data were collected during two sampling periods (summer 2000 and winter 2002) using a real-time total ambient mass sampler (RAMS), sample equilibration system (SES)-tapered element oscillating microbalance (TEOM), and conventional TEOM monitor. This paper compares the results obtained from the various monitoring systems, which differ in their treatment of semivolatile material (SVM; particle-bound water, semivolatile ammonium nitrate, and semivolatile organic compounds). PM2.5 mass results obtained by the RAMS were consistently higher than those obtained by the SES-TEOM and conventional TEOM monitors because of the RAMS ability to measure semivolatile ammonium nitrate and semivolatile organic material but not particle-bound water. The SES-TEOM monitoring system was able to account for an average of 28% of the SVM, whereas the conventional TEOM monitor loses essentially all of the SVM from the single filter during sampling. Occasional mass readings by the various TEOM monitors that are higher than RAMS results may reflect particle-bound water, which, under some conditions, is measured by the TEOM but not the RAMS.  相似文献   

2.
Hourly average concentrations of PM10 and PM2.5 have been measured simultaneously at a site within Birmingham U.K. between October 1994 and October 1995. Comparison of PM10 and NOx data with two other sites in the same city shows comparable summer and winter mean concentrations and highly significant inter-site correlations for both hourly and daily mean data. Over a four-month period samples were also collected for chemical analysis of sulphate, nitrate, chloride, ammonium and elemental and organic carbon. Analysis of the data indicates a marked difference between summer and winter periods. In the winter months PM2.5 comprises about 80% of PM10 and is strongly correlated with NOx indicating the importance of road traffic as a source. In the summer months, coarse particles (PM10−PM2.5) account for almost 50% of PM10 and the influence of resuspended surface dusts and soils and of secondary particulate matter is evident. The chemical analysis data are also consistent with three sources dominating the PM10 composition: vehicle exhaust emissions, secondary ammonium salts and resuspended surface dusts. Coarse particles from resuspension showed a positive dependence on windspeed, whilst elemental carbon derived from road traffic exhibited a negative dependence.  相似文献   

3.
Abstract

Increased interest in the health effects of ambient par–ticulate mass (PM) has focused attention on the evaluation of existing mass measurement methodologies and the definition of PM in ambient air. The Rupprecht and Patashnick Tapered Element Oscillating MicroBalance (TEOM®) method for PM is compared with time–integrated gravimetric (manual) PM methods in large urban areas during different seasons. Comparisons are conducted for both PM10 and PM2.5 concentrations.

In urban areas, a substantial fraction of ambient PM can be semi–volatile material. A larger fraction of this component of PM10 may be lost from the TEOM–heated filter than the Federal Reference Method (FRM). The observed relationship between TEOM and FRM methods varied widely among sites and seasons. In East Coast urban areas during the summer, the methods were highly correlated with good agreement. In the winter, correlation was somewhat lower, with TEOM PM concentrations generally lower than the FRM. Rubidoux, CA, and two Mexican sites (Tlalnepantla and Merced) had the highest levels of PM10 and the largest difference between TEOM and manual methods.

PM2.5 data from collocation of 24–hour manual samples with the TEOM are also presented. As most of the semi–volatile PM is in the fine fraction, differences between these methods are larger for PM2.5 than for PM10.  相似文献   

4.
The 24-h average coarse (PM10) and fine (PM2.5) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM10 and PM2.5 concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM10 concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM2.5 concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM10 and PM2.5 masses showed a high concentration in winter followed by monsoon and summer seasons.The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM10 and PM2.5 concentrations at the study area. Results indicated that marine aerosol (40.4% in PM10 and 21.5% in PM2.5) and secondary PM (22.9% in PM10 and 42.1% in PM2.5) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM10 and 6% in PM2.5), biomass burning (0.7% in PM10 and 14% in PM2.5), tire and brake wear (4.1% in PM10 and 5.4% in PM2.5), soil (3.4% in PM10 and 4.3% in PM2.5) and other sources (12.7% in PM10 and 6.8% in PM2.5).  相似文献   

5.
Weekly PM2.5 samples were simultaneously collected at a residential (Tsinghua University) and a downtown (Chegongzhuang) site in Beijing from July 1999 through September 2000. The ambient mass concentration and chemical composition of the PM2.5 were determined. Analyses included elemental composition, water-soluble ions, and organic and elemental carbon. Weekly PM2.5 mass concentrations ranged from 37 to 357 μg/m3, with little difference found between the two sites. Seasonal variation of PM2.5 concentrations was significant, with the highest concentration in the winter and the lowest in the summer. Spring dust storms had a strong impact on the PM2.5. Overall, organic carbon was the most abundant species, constituting no less than 30% of the total PM2.5 mass at both sites. Concentrations of organic and elemental carbon were 35% and 16% higher at Tsinghua University than at Chegongzhuang. Ammonium, nitrate and sulfate were comparable at the sites, accounting for 25–30% of the PM2.5 mass.  相似文献   

6.
Abstract

A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions [PMCAMx]) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9–11%), nitrate (45–58%), and ammonium (7–11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8–17%), nitrate decreases (18– 42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5–10% reduction of PM2.5 because of reductions in nitrate (4–19%), ammonium (4–10%), organic PM (12–14%), and small reductions in sulfate. Although sulfur dioxide (SO2) reduction is the single most effective approach for sulfate control, the coupled decrease of SO2 and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO2 reduction alone.  相似文献   

7.
Abstract

The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30–35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2–4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4 2?, NO3 ?, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3 ?, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

8.
Ammonium nitrate and semivolatile organic material (SVOM) are significant components of fine particles in urban atmospheres. These components, however, are not properly determined with methods such as the fine particulate matter (PM2.5) Federal Reference Method (FRM) or other single filter samplers because of significant losses of semivolatile material (SVM) from particles collected on the filter during sampling. The R&P tapered element oscillating microbalance (TEOM) monitor also does not measure SVM, because this method heats the sample to remove particle bound water, which also results in evaporation of SVM. Recent advances in monitoring techniques have resulted in samplers for both integrated and continuous measurement of total PM2.5, including the particle concentrator-Brigham Young University organic sampling system (PC-BOSS), the real-time total ambient mass sampler (RAMS), and the R&P filter dynamics measurement system (FDMS) TEOM monitor. Results obtained using these samplers have been compared with those obtained with either a PM2.5 FRM sampler or a TEOM monitor in studies conducted during the past five years. These studies have shown the following: (1) the PC-BOSS, RAMS, and FDMS TEOM are all comparable. Each instrument measures both the nonvolatile material and the SVM. (2) The SVM is not retained on the heated filter of a regular TEOM monitor and is not measured by this sampling technique. (3) Much of the SVM is also lost during sampling from single filter samplers such as the PM2.5 FRM sampler. (4) The amount of SVM lost from single filter samplers can vary from less than one-third of that lost from heated TEOM filters during cold winter conditions to essentially all during warm summer conditions. (5) SVOM can only be reliably collected using an appropriate denuder sampler. (6) A PM2.5 speciation sampler can be easily modified to a denuder sampler with filters that can be analyzed for semivolatile organic carbon (OC), nonvolatile OC, and elemental carbon using existing OC/elemental carbon analytical techniques. The research upon which these statements are based for various urban studies are summarized in this paper.  相似文献   

9.
Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM2.5 versus 3.3 ± 1.4% of the PM2.5 mass during the winter.  相似文献   

10.
PM2.5 sampling was conducted at a curbside location in Delhi city for summer and winter seasons, to evaluate the effect of PM2.5 and its chemical components on the visibility impairment. The PM2.5 concentrations were observed to be higher than the National Ambient Air Quality Standards (NAAQS), indicating poor air quality. The chemical constituents of PM2.5 (the water-soluble ionic species SO42-, NO3?, Cl?, and NH4+, and carbonaceous species: organic carbon, elemental carbon) were analyzed to study their impact on visibility impairment by reconstructing the light extinction coefficient, bext. The visibility was found to be negatively correlated with PM2.5 and its components. The reconstructed bext showed that organic matter was the largest contributor to bext in both the seasons which may be attributed to combustion sources. In summer season, it was followed by elemental carbon and ammonium sulfate; however, in winter, major contributions were from ammonium nitrate and elemental carbon. Higher elemental carbon in both seasons may be attributed to traffic sources, while lower concentrations of nitrate during summer, may be attributed to volatility because of higher atmospheric temperatures.

Implications: The chemical constituents of PM2.5 that majorly effect the visibility impairment are organic matter and elemental carbon, both of which are products of combustion processes. Secondary formations that lead to ammonium sulfate and ammonium nitrate production also impair the visibility.  相似文献   

11.
Although particulate emissions from residential wood burning have become a subject of great scientific concern for a few years, data related to their impact on the air quality of large European urban centres are still missing. In the present study, we investigated the chemical and optical properties of fine (PM2.5) carbonaceous aerosols in Paris during the 2005 winter season in order to track the presence of wood burning emissions in such a large city. The use of a seven wavelength Aethalometer allowed us to document shortwave light absorption by brown-carbon-containing organic aerosols of biomass burning origin. In particular, a well-marked diurnal pattern of the spectral dependence of light absorption, with maxima during the night, could be observed every day of the campaign and attributed to wood burning emissions. Relatively high absorption Ångstrom exponents and WSOC/OC ratios (respectively 1.25 and 0.35 on average for the period of study) also indicated the importance of biomass burning aerosols in the Paris atmosphere in winter. Finally, a rough estimate of the contribution of wood burning carbonaceous aerosols to PM2.5 could be achieved. This contribution was found to be as high as 20 ± 10% on average at the Paris background site investigated here.  相似文献   

12.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

13.
A detailed aerosol source apportionment study was performed with two sampling campaigns, during wintertime and summertime in the heavily polluted metropolitan area of São Paulo, Brazil. In addition to 12 h fine and coarse mode filter sampling, several real time aerosol and trace gas monitors were used. PM10 was sampled using stacked filter units that collects fine (d<2.5 μm) and coarse (2.5<d<10 μm) particulate matter, providing mass, black carbon (BC) and elemental concentration for each aerosol mode. The concentration of about 20 elements was determined using the particle induce X-ray emission technique. Real time aerosol monitors provided PM10 aerosol mass (TEOM), organic and elemental carbon (Carbon Monitor 5400, R&P) and BC concentration (Aethalometer). A complex system of sources and meteorological conditions modulates the heavy air pollution of the urban area of São Paulo. The boundary layer height and the primary emissions by motor vehicles controls the strong pattern of diurnal cycles obtained for PM10, BC, CO, NOx, and SO2. Absolute principal factor analysis results showed a very similar source pattern between winter and summer field campaigns, despite the different locations of the sampling sites of both campaigns, pointing that there are no significant change in the main air pollution sources. The source identified as motor vehicle represented 28% and 24% of the PM2.5 for winter and summer, respectively. Resuspended soil dust accounted for 25% and 30%. The oil combustion source represented 18% and 21%. Sulfates accounts for 23% and 17% and finally industrial emissions contributed with 5% and 6% of PM2.5, for winter and summer, respectively. The resuspended soil dust accounted for a large fraction (75–78%) of the coarse mode aerosol mass. Certainly automobile traffic and soil dust are the main air pollution sources in São Paulo. The sampling and analytical procedures applied in this study showed that it is possible to perform a quantitative aerosol source apportionment in a complex urban area such as São Paulo.  相似文献   

14.
High concentration of fine airborne particulates is considered one of the major environmental pollutants in Santiago, the Chilean Capital city, which in 1997 was declared a PM10 saturated zone. To date there is no control of the amounts of fine and coarse aerosols concentrations and the source and chemical characterizations of the PM2.5 particulates in the carbonaceous fractions are not well known even though this fraction could be represented almost the 50% in mass of the PM2.5.In this work, we present for the first time determinations of primary organic aerosol (POA) and secondary organic aerosol composition (SOA) fractions of the total mass of PM2.5 particulates collected in the urban atmosphere of Santiago City. Our purpose is to know the anthropogenic contributions to the formation of SOA. To accomplish this we used the elemental carbon (EC) and organic carbon (OC) determinations developed by automatic monitoring stations installed in the city during the period 2002–2005, with a particular analysis of the summer time occurred in February 2004. Based on the EC tracer method, we have estimated the POA and SOA fraction and our data permit us to estimate the SOA reaching up to 20% of total organic aerosol matter, in good agreement to other measurements observed in large cities of Europe and U.S.A.  相似文献   

15.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   

16.
ABSTRACT

Canadian particle monitoring programs examining PM10, PM2.5, and particle composition have been in operation for over 10 years. Until recently, the measurements were manual/filter-based with 24-hr sample collection varying in frequency from daily to every sixth day, using GrasebyAnderson dichotomous samplers. In the past few years, these monitoring activities have been expanded to include hourly measurements using tapered element oscillating microbalances (TEOMs). This continuous monitoring program started operation focusing on PM10, but now emphasizes PM2.5 through the addition of more TEOMs and switching of the inlets of some of the existing units. The data from all of these measurement activities show that there are broad geographical differences and also local- to regional-scale spatial differences in mass and composition of PM2.5. Due to variations in sources, significantly different PM2.5 concentrations are not uncommon within the same city. Comparison of nearby urban and rural sites indicates that 30 and 40% of the PM2.5 is from local urban sources in Montreal and Toronto, respectively. Hourly PM2.5 measurements in Toronto suggest that vehicular emissions are an important contributor to urban PM2.5. There has been a decreasing trend in urban PM2.5, with annual average concentrations between the 1987–1990 and 1993–1995 periods decreasing by 11 to 39%, depending upon the site. The largest declines were in Montreal and Halifax, and the smallest decline was in Toronto. Comparison of 24-hr TEOM and manual dichotomous sampler PM2.5 measurements from a site in Toronto indicates that the TEOM results in lower concentrations. The magnitude of this difference is relatively small in the warmer months, averaging about 12%. During the colder months the difference averages about 23%, but can be as large as 50%.  相似文献   

17.
Tapered element oscillating microbalances equipped with sample equilibration system (TEOM-SES) used by the province of Ontario for the ambient monitoring of PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) in its air quality index (AQI) network were collocated with the Synchronized Hybrid Ambient Real-time Particulate monitor (SHARP 5030) at two monitoring sites for a period spanning approximately 2 years to determine the similarities and differences between the measurement outputs of both instrumental systems. Due mainly to mass loss observed with the TEOM-SES in cooler months, the province has recently switched its PM2.5 instrumentation at all stations in its monitoring network from the TEOM-SES to the SHARP 5030, which has the U.S. Environmental Protection Agency (EPA) Federal Equivalent Method (FEM) Class III designation. Thus, it has become imperative to develop corrections for historical and future TEOM measurements for the purpose of making them more agreeable to the new FEM method. This work details the authors’ multiple linear regression analyses (MLRAs) of particulate matter data from both instrumental monitors, with the inclusion of operational parameters of physicochemical relevance for both cases of transformations of historical TEOM and TEOM measurements to be made in the future. For historical TEOM data, it was observed that the transformations only benefited winter and fall months. Furthermore, comparisons of the transformed historical TEOM data with PM2.5 concentrations determined from the Federal Reference Method (FRM) sampler at seven locations within the province showed marked improvements over the observed TEOM-FRM comparisons.

Implications:This work provides a path to correcting the historically observed underreporting of particulate mass in winter and fall in Ontario by making the TEOM-based continuous data resemble the new FEM outputs (in this case, more SHARP-like). It is possible that the transformation of mainly winter TEOM data as detailed in this work may potentially lead to revisions in historical annual composite mean PM2.5 concentrations and total annual number of days PM2.5 exceeded the Canada-wide Standard (CWS) metric across the province.  相似文献   


18.
Seasonal changes in aerosol compositions over Belgium and Europe are simulated with an extended version of the EUROS model. EUROS is capable of modelling mass and chemical composition of aerosols in two size fractions (PM2.5 and PM10-2.5). The chemical composition is expressed in terms of seven components: ammonium, nitrate, sulphate, primary inorganic compounds, elementary carbon, primary organic compounds and Secondary Organic Compounds (SOA). A comparison of modelled and measured aerosol concentrations showed that modelled concentrations are generally consistent with observed concentrations. The chemical composition of the aerosol showed a strong dependence on the season. High aerosol concentrations during the summer were mainly due to high concentrations of the secondary components nitrate, ammonium, sulphate and SOA in the size fraction PM2.5. In contrast, during autumn and winter, increased PM-concentrations were mainly due to higher concentrations of primary components, especially in the size fraction PM10-2.5.  相似文献   

19.
The authors analyze the sensitivities of source regions in East Asia to PM2.5 (particulate matter with an aerodynamic diameter of ≤2.5 µm) concentration at Fukue Island located in the western part of Japan by using a regional chemical transport model with emission sensitivity simulations for the year 2010. The temporal variations in PM2.5 concentration are generally reproduced, but the absolute concentration is underestimated by the model. Chemical composition of PM2.5 in the model is compared with filter sampling data in spring; simulated sulfate, ammonium, and elemental carbon are consistent with observations, but mass concentration of particulate organic matters is underestimated. The relative contribution from each source region shows the seasonal variation, especially in summer. The contribution from central north China (105°E–124°E, 34°N–42°N) accounts for 50–60% of PM2.5 at Fukue Island except in summer; it significantly decreases in summer (18%). Central south China (105°E–123°E, 26°N–34°N) has the relative contribution of 15–30%. The contribution from the Korean Peninsula is estimated at about 10% except in summer. The domestic contribution accounts for about 7% in spring and autumn and increases to 19% in summer. We also estimate the relative contribution to daily average concentration in high PM2.5 days (>35 μg m?3). Central north China has a significant contribution of 60–70% except in summer. The relative contribution from central south China is estimated at 46% in summer and about 30% in the other seasons. The contributions from central north and south China on high PM2.5 days are generally larger than those of their seasonal mean contributions. The domestic contribution is smaller than the seasonal mean value in every season; it is less than 10% even in summer. These model results suggest that foreign anthropogenic sources have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island.
Implications: The contribution from several source regions in East Asia to PM2.5 concentration at Fukue Island, a remote island located in the western part of Japan and close to the Asian continent, is estimated using a three-dimensional chemical transport model. The model results suggest that PM2.5 that is attributed to foreign anthropogenic sources have a larger contribution than that of domestic pollution and have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island.  相似文献   

20.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号