首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
Assessing the public health benefits from air pollution control measures is assisted by understanding the relationship between mobile source emissions and subsequent fine particulate matter (PM2.5) exposure. Since this relationship varies by location, we characterized its magnitude and geographic distribution using the intake fraction (iF) concept. We considered emissions of primary PM2.5 as well as particle precursors SO2 and NOx from each of 3080 counties in the US. We modeled the relationship between these emissions and total US population exposure to PM2.5, making use of a source–receptor matrix developed for health risk assessment. For primary PM2.5, we found a median iF of 1.2 per million, with a range of 0.12–25. Half of the total exposure was reached by a median distance of 150 km from the county where mobile source emissions originated, though this spatial extent varied across counties from within the county borders to 1800 km away. For secondary ammonium sulfate from SO2 emissions, the median iF was 0.41 per million (range: 0.050–10), versus 0.068 per million for secondary ammonium nitrate from NOx emissions (range: 0.00092–1.3). The median distance to half of the total exposure was greater for secondary PM2.5 (450 km for sulfate, 390 km for nitrate). Regression analyses using exhaustive population predictors explained much of the variation in primary PM2.5 iF (R2=0.83) as well as secondary sulfate and nitrate iF (R2=0.74 and 0.60), with greater near-source contribution for primary than for secondary PM2.5. We conclude that long-range dispersion models with coarse geographic resolution are appropriate for risk assessments of secondary PM2.5 or primary PM2.5 emitted from mobile sources in rural areas, but that more resolved dispersion models are warranted for primary PM2.5 in urban areas due to the substantial contribution of near-source populations.  相似文献   

2.
The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.  相似文献   

3.
Abstract

A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions [PMCAMx]) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9–11%), nitrate (45–58%), and ammonium (7–11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8–17%), nitrate decreases (18– 42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5–10% reduction of PM2.5 because of reductions in nitrate (4–19%), ammonium (4–10%), organic PM (12–14%), and small reductions in sulfate. Although sulfur dioxide (SO2) reduction is the single most effective approach for sulfate control, the coupled decrease of SO2 and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO2 reduction alone.  相似文献   

4.
Abstract

During the last 10 years, high atmospheric concentrations of airborne particles recorded in the Mexico City metropolitan area have caused concern because of their potential harmful effects on human health. Four monitoring campaigns have been carried out in the Mexico City metropolitan area during 2000-2002 at three sites: (1) Xalos-toc, located in an industrial region; (2) La Merced, located in a commercial area; and (3) Pedregal, located in a residential area. Results of gravimetric and chemical analyses of 330 samples of particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) and PM with an aerodynamic diameter less than 10 μm (PM10) indicate that (1) PM2.5/PM10 average ratios were 0.42, 0.46, and 0.52 for Xalostoc, La Merced, and Pedregal, respectively; (2) the highest PM2.5 and PM10 concentrations were found at the industrial site; (3) PM2.5 and PM10 concentrations were lower at nighttime; (4) PM2.5 and PM10 spatial averages concentrations were 35 and 76 μg/m3, respectively; and (5) when the PM2.5 standard was exceeded, nitrate, sulfate, ammonium, organic carbon, and elemental carbon concentrations were high. Twenty-four hour averaged PM2.5 concentrations in Mexico City and Sao Paulo were similar to those recorded in the 1980s in Los Angeles. PM10 concentrations were comparable in Sao Paulo and Mexico City but 3-fold lower than those found in Santiago.  相似文献   

5.
A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston–Galveston Bay (HGB) and Beaumont–Port Arthur (BPA) areas were determined.The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS).The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary.Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.  相似文献   

6.
ABSTRACT

Reductions in airborne sulfate concentration may cause inorganic fine particulate matter (PM25) to respond nonlinearly, as nitric acid gas may transfer to the aerosol phase. Where this occurs, reductions in sulfur dioxide (SO2) emissions will be much less effective than expected at reducing PM2.5. As a measure of the efficacy of reductions in sulfate concentration on PM , we define marginal PM2.5 as the local change in PM2.5 resulting from a small change in sulfate concentration. Using seasonal-average conditions and assuming thermodynamic equilibrium, we find that the conditions for PM2.5 to respond nonlinearly to sulfate reductions are common in the eastern United States in winter, occurring at half of the sites considered, and uncommon in summer, due primarily to the influence of temperature. Accounting for diurnal and intraseasonal variability, we find that seasonal-average conditions provide a reasonable indicator of the time-averaged PM2.5 response. These results indicate that reductions in sulfate concentration may be up to 50% less effective at reducing the annual-average PM2.5 than if the role of nitric acid is neglected. Further, large reductions in sulfate will also cause an increase in aerosol nitrate in many regions that are the most acidic.  相似文献   

7.
Health studies have shown premature death is statistically associated with exposure to particulate matter <2.5 μm in diameter (PM2.5). The United States Environmental Protection Agency requires all States with PM2.5 non-attainment counties or with sources contributing to visibility impairment at Class I areas to submit an emissions control plan. These emission control plans will likely focus on reducing emissions of sulfur oxides and nitrogen oxides, which form two of the largest chemical components of PM2.5 in the eastern United States: ammonium sulfate and ammonium nitrate. Emission control strategies are simulated using three-dimensional Eulerian photochemical transport models.A monitor study was established using one urban (Detroit) and nine rural locations in the central and eastern United States to simultaneously measure PM2.5 sulfate ion (SO42−), nitrate ion (NO3), ammonium ion (NH4+), and precursor species sulfur dioxide (SO2), nitric acid (HNO3), and ammonia (NH3). This monitor study provides a unique opportunity to assess how well the modeling system predicts the spatial and temporal variability of important precursor species and co-located PM2.5 ions, which is not well characterized in the central and eastern United States.The modeling system performs well at estimating the PM2.5 species, but does not perform quite as well for the precursor species. Ammonia is under-predicted in the coldest months, nitric acid tends to be over-predicted in the summer months, and sulfur dioxide appears to be systematically over-predicted. Several indicators of PM2.5 ammonium sulfate and ammonium nitrate formation and chemical composition are estimated with the ambient data and photochemical model output. PM2.5 sulfate ion is usually not fully neutralized to ammonium sulfate in ambient measurements and is usually fully neutralized in model estimates. The model and ambient estimates agree that the ammonia study monitors tend to be nitric acid limited for PM2.5 nitrate formation. Regulatory strategies in this part of the country should focus on reductions in NOX rather than ammonia to control PM2.5 ammonium nitrate.  相似文献   

8.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981–2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summerfallow land.

Implications: Increasing sustainability in agriculture often means adapting management practices to have a beneficial impact on the environment while maintaining or increasing production and economic benefits. We developed an inventory of primary PM emissions from agriculture in Canada to better quantify the apportionment, spatial distribution, and trends for Census years 1981–2006. We found major reductions of 40% in PM10 and 47% in PM2.5 emissions over the 25-yr period as a co-benefit of increasing carbon sequestration in agricultural soils. Indeed, farmers adopted conservation tillage/no-till practices, increased usage of cover crops, and reduced summerfallow, in order to increase soil organic matter and reduce carbon dioxide emissions, which also reduced primary PM emissions, although the agricultural production increased over the period.  相似文献   

9.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

10.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

11.
12.
The ambient PM10 and PM2.5 data collected during the fall and winter portions of the 1995 Integrated Monitoring Study (IMS95) were used to conduct Chemical Mass Balance (CMB) Modeling to determine source contribution estimates. Data from the core and saturation monitoring sites provided an extensive database for evaluating the spatial and temporal variations of contributing sources. Geological sources dominated fall samples, while secondary ammonium nitrate and carbonaceous sources were the largest contributors for winter samples. Secondary ammonium nitrate concentrations were uniform across all sites during both the fall and winter. Site-to-site variability was primarily due to differences in geological contributions in the fall, and carbonaceous source contributions in the winter. During the winter, diurnal profiles of particulate matter (PM) were driven by variations in carbonaceous sources at urban sites, and by variations in secondary ammonium nitrate at rural sites. Although records of day-specific PM activities were recorded during the study, no correlation was observed between 24-h CMB results and specific activities. The ambient data collected during IMS95 was also used to evaluate the adequacy of the emissions inventory. Comparison of ambient and emissions based ratios of NMHC/NOx, PM/NOx, CO/NOx, and SOx/NOx suggested that emissions of NMHC and CO in some locations may be underestimated, while emissions for PM and SOx may be overestimated. Comparison of fractional primary CMB source contribution estimates to corresponding fractional emissions estimates indicated that geological sources were overemphasized in the inventory, while carbonaceous sources were underrepresented.  相似文献   

13.
Abstract

The Mohave Valley region of southern Nevada/southwestern Arizona has experienced elevated particulate concentrations and is classified as a PM10 nonattainment area. Anthropogenic aerosol sources in the area include the Mohave Power Project (MPP), a 1,580-MW coal-fired power plant; motor vehicles; construction activities; and paved and unpaved road dust and disturbed desert soil. Aerosols may also be transported long distances from other areas, such as the Los Angeles Basin. Based on the infrequency of plume contact at sites in the valley (as determined by SO2 measurements), it was believed that the contribution of the MPP to primary PM10 was minimal and that fugitive dust was the primary source of ambient particulate matter.

To evaluate the magnitude of source contributors, PM10 measurements were made using a medium-volume sampler along with ancillary meteorological and air quality measurements in the Mohave Valley at Bullhead City, Arizona, for a period of longer than one year (September 1988 through mid-October 1989). The aerosol filter samples were analyzed for mass, elements, ions, and carbon. Source apportionment using the Chemical Mass Balance (CMB) receptor model was performed. On average, geological dust was the major contributor to PM10 (79.5%), followed by primary motor vehicle sources (16.7%), secondary ammonium sulfate (3.5%), secondary ammonium nitrate (0.1%), and primary coal-fired power plant emissions (0.1%).  相似文献   

14.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   

15.
Abstract

The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998–1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10–2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999–2003) of filter-based PM2.5 and PM10–2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 µg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 µg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3–7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for ≥60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components (“other”) account for ≥80% of PM10–2.5 mass. Limited data suggest that much of the unidentified mass in PM10–2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and “other.” Annual means for PM2.5 and PM10–2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999–2003 period (10–20% in the case of PM2.5, dominated by 14–20% declines in sulfate and 11–26% declines in OM, and 14–25% in the case of PM10–2.5, dominated by 17–30% declines in MMO and 14–31% declines in “ other”). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

16.
Abstract

This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 μm (PM10) and fine PM with aerodynamic diameter of less than 2.5 μm (PM2.5) ranged from 32.2 to 76.6 μg m-3 and 11.1 to 23.7 μg m-3, respectively. OC (34%), SO4 = (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10, geological material (57.9%), OC (17.3%), and SO4 = (9.7%) were the major components. Coarse fraction (PM10 –PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r2 = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 μm.  相似文献   

17.
Abstract

Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were sec ondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.  相似文献   

18.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   

19.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

20.
A three-dimensional chemical transport model (PMCAMx) is used to simulate PM mass and composition in the eastern United States for a July 2001 pollution episode. The performance of the model in this region is evaluated, taking advantage of the highly time and size-resolved PM and gas-phase data collected during the Pittsburgh Air Quality Study (PAQS). PMCAMx uses the framework of CAMx and detailed aerosol modules to simulate inorganic aerosol growth, aqueous-phase chemistry, secondary organic aerosol formation, nucleation, and coagulation. The model predictions are compared to hourly measurements of PM2.5 mass and composition at Pittsburgh, as well as to measurements from the AIRS and IMPROVE networks. The performance of the model for the major PM2.5 components (sulfate, ammonium, and organic carbon) is encouraging (fractional errors are in general smaller than 50%). Additional improvements are possible if the rainfall measurements are used instead of the meteorological model predictions. The modest errors in ammonium predictions and the lack of bias for the total (gas and particulate) ammonium suggest that the improved ammonia inventory used is reasonable. The significant errors in aerosol nitrate predictions are mainly due to difficulties in simulating the nighttime formation of nitric acid. The concentrations of elemental carbon (EC) in the urban areas are significantly overpredicted. This is a problem related to both the emission inventory but also the different EC measurement methods that have been used in the two measurement networks (AIRS and IMPROVE) and the actual development of the inventory. While the ability of the model to reproduce OC levels is encouraging, additional work is necessary to confirm that that this is due to the right reasons and not offsetting errors in the primary emissions and the secondary formation. The model performance against the semi-continuous measurements in Pittsburgh appears to be quite similar to its performance against daily average measurements in a wide range of stations across the Eastern US. This suggests that the skill of the model to reproduce the diurnal variability of PM2.5 and its major components is as good as its ability to reproduce the daily average values and also the significant value of high temporal resolution measurements for model evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号