首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
Abstract

Air quality is degraded by many factors, among which the emissions from on‐road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy‐making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

2.
Air quality is degraded by many factors, among which the emissions from on-road vehicles play a significant role. Timely and accurate estimate of such emissions becomes very important for policy-making and effective control measures. However, lack of traffic data and outdated emission software make this task difficult. This research has demonstrated a new method that facilitates the vehicular emission inventories at the local level by using shorter-time Highway Performance Monitoring System (HPMS) traffic data along with the latest U.S. Environment Protection Agency (EPA) emission modeling software, MOBILE6. The conversion methodology was developed for converting readily available HPMS traffic volume data into EPA MOBILE-based traffic classifications, and a corresponding software program was written for automating the process. EPA MOBILE6 model was used to obtain emissions of nitrogen oxides (NOx), volatile organic compound (VOC), and cabon monoxide (CO) emitted by the parent traffic and subsampled traffic data, and these emissions were additionally compared. The case study has shown that the difference of the magnitude between the emission estimates produced by certain subsampled and parent traffic data are minor, indicating that subsampled HPMS data can be used for reporting parent traffic emissions. It was also observed that traffic emissions follow a Weibull distribution, and NOx emissions were more sensitive to the traffic data composition than VOC and CO. Lastly, use of average emission values of 20 or 30 consecutive minutes appears to be valid for representing hourly emissions.  相似文献   

3.
To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.  相似文献   

4.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

5.
The sensitivity of biogenic emission estimates and air quality model predictions to the characterization of land use/land cover (LULC) in southeastern Texas was examined using the Global Biosphere Emissions and Interactions System (GloBEIS) and the Comprehensive Air Quality Model with extensions (CAMx). A LULC database was recently developed for the region based on source imagery collected by the Landsat 7 Enhanced Thematic Mapper-Plus sensor between 1999 and 2003, and field data for land cover classification, species identification and quantification of biomass densities.  Biogenic emissions estimated from the new LULC data set showed good general agreement in their spatial distribution, but were approximately 40% lower than emissions from the LULC data set currently used by the State of Texas, primarily because of differences in the biomass estimates of key species such as Quercus. Predicted ozone mixing ratios using the biogenic emissions produced from the new LULC data set were as much as 26 ppb lower in some areas on some days, depending on meteorological conditions. Satellite data and image classification techniques provide useful tools for mapping and monitoring changes in LULC. However, field validation is necessary to link species and biomass densities to the classification system used for accurate biogenic emissions estimates, especially in areas such as riparian corridors that contain dense spatial coverage of key species.  相似文献   

6.
Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.  相似文献   

7.
This paper examines the use of Moderate Resolution Imaging Spectroradiometer (MODIS) observed active fire data (pixel counts) to refine the National Emissions Inventory (NEI) fire emission estimates for major wildfire events. This study was motivated by the extremely limited information available for many years of the United States Environmental Protection Agency (US EPA) NEI about the specific location and timing of major fire events. The MODIS fire data provide twice-daily snapshots of the locations and breadth of fires, which can be helpful for identifying major wildfires that typically persist for a minimum of several days. A major wildfire in Mallory Swamp, FL, is used here as a case study to test a reallocation approach for temporally and spatially distributing the state-level fire emissions based on the MODIS fire data. Community Multiscale Air Quality (CMAQ) model simulations using these reallocated emissions are then compared with another simulation based on the original NEI fire emissions. We compare total carbon (TC) predictions from these CMAQ simulations against observations from the Inter-agency Monitoring of Protected Visual Environments (IMPROVE) surface network. Comparisons at three IMPROVE sites demonstrate substantial improvements in the temporal variability and overall correlation for TC predictions when the MODIS fire data is used to refine the fire emission estimates. These results suggest that if limited information is available about the spatial and temporal extent of a major wildfire fire, remotely sensed fire data can be a useful surrogate for developing the fire emissions estimates for air quality modeling purposes.  相似文献   

8.
Fugitive dust emissions from stockpiles in the open storage yards of industrial sites and the subsequent atmospheric dust dispersion have brought about many ecological and economical problems. This paper introduces a new approach to estimate emission rates using data from Computational Fluid Dynamics simulations. Flow around stockpiles of varying configurations was studied using a previously validated numerical model. Different pile height scenarios, corresponding to a constant material volume and a fixed angle of repose, were exposed to various wind speeds. Flow analysis over the piles showed the importance of using 3D simulations to fully understand the close linkage between flow processes and particles uptake. Data obtained were then integrated in order to evaluate dust emission rates. Results provide evidence to suggest that changing pile configuration can reduce dust emissions. It was found that, for the range of wind conditions and pile dimensions tested, the intermediate pile height configurations lead to a better overall protecting effect from wind and thus were found to produce lower dust emissions.  相似文献   

9.
Traffic emission estimation in developing countries is a key-issue for air pollution management. In most cases, comprehensive bottom-up methodologies cannot be applied in mid-sized cities because of the resource cost related to their application. In this paper, a simplified emission estimation model (SEEM) is evaluated. The model is based on a top-down approach and gives annual global hot emission. Particular attention is paid to the quality of the input traffic data. The quality of results is assessed by application of the SEEM model in the Chilean Gran Concepción urban area and by comparison with a bottom-up approach that has been led for the year 2000. The SEEM model estimates emissions with an accuracy of about 20% and is related to important resource savings. The results of the SEEM model are then distributed in space with a disaggregation approach and using GIS techniques. The relevancy of the disaggregation approach is evaluated among several possibilities through statistical methods. A spatial disaggregation using principal roads density gives the best results in terms of emissions repartition and gives a globally accurate image of the distribution of hot emissions in a mid-sized city.  相似文献   

10.
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased.  相似文献   

11.
Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

Implications: Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.  相似文献   


12.
The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis ("hot-spot" analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

13.
Abstract

The primary health concern associated with exposures to chromite ore processing residue (COPR)-affected soils is inhalation of hexavalent chromium [Cr(VI)] particulates. Site-specific soil alternative remediation standards (ARSs) are set using soil suspension and dispersion models to be protective of the theoretical excess cancer risk associated with inhalation of soil suspended by vehicle traffic and wind. The purpose of this study was to update a previous model comparison study that identified the 1995 AP-42 particulate emission model for vehicle traffic over un-paved roads and the Fugitive Dust Model (FDM) as the most appropriate model combination for estimating site-specific ARSs. Because the AP-42 model has been revised, we have updated our past evaluation. Specifically, the 2006 AP-42 particulate emissions model; the Industrial Source Complex–Short Term model, version 3 (ISCST3); and the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) air dispersion models were evaluated, and the results were compared with those from the previously used modeling approaches. Two sites with and two sites without vehicle traffic were evaluated to determine if wind erosion is a significant source of emissions. For the two sites with vehicle traffic, both FDM and ISCST3 produced total suspended particulate (TSP) estimates that were, on average, within a factor of 2 of measured; whereas AERMOD produced estimates that were as much as 5-fold higher than measured. In general, the estimated TSP concentrations for FDM were higher than those for ISCST3. For airborne Cr(VI), the ISCST3 model produced estimates that were only 2- to 8-fold of the measured concentrations, and both FDM and AERMOD estimated airborne Cr(VI) concentrations that were approximately 4- to 14-fold higher than measured. Results using the 1995 AP-42 model were closer to measured than those from the 2006 AP-42 model. Wind erosion was an insignificant contributor to particulate emissions at COPR sites.  相似文献   

14.
The primary health concern associated with exposures to chromite ore processing residue (COPR)-affected soils is inhalation of hexavalent chromium [Cr(VI)] particulates. Site-specific soil alternative remediation standards (ARSs) are set using soil suspension and dispersion models to be protective of the theoretical excess cancer risk associated with inhalation of soil suspended by vehicle traffic and wind. The purpose of this study was to update a previous model comparison study that identified the 1995 AP-42 particulate emission model for vehicle traffic over unpaved roads and the Fugitive Dust Model (FDM) as the most appropriate model combination for estimating site-specific ARSs. Because the AP-42 model has been revised, we have updated our past evaluation. Specifically, the 2006 AP-42 particulate emissions model; the Industrial Source Complex-Short Term model, version 3 (ISCST3); and the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) air dispersion models were evaluated, and the results were compared with those from the previously used modeling approaches. Two sites with and two sites without vehicle traffic were evaluated to determine if wind erosion is a significant source of emissions. For the two sites with vehicle traffic, both FDM and ISCST3 produced total suspended particulate (TSP) estimates that were, on average, within a factor of 2 of measured; whereas AERMOD produced estimates that were as much as 5-fold higher than measured. In general, the estimated TSP concentrations for FDM were higher than those for ISCST3. For airborne Cr(VI), the ISCST3 model produced estimates that were only 2- to 8-fold of the measured concentrations, and both FDM and AERMOD estimated airborne Cr(VI) concentrations that were approximately 4- to 14-fold higher than measured. Results using the 1995 AP-42 model were closer to measured than those from the 2006 AP-42 model. Wind erosion was an insignificant contributor to particulate emissions at COPR sites.  相似文献   

15.
Abstract

The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis (“hot-spot” analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

16.
A methodology for estimating vehicular emissions comprising a car simulator, a basic traffic model, and a geographical information system is capable of estimating vehicle emissions with high time and space resolution. Because of the extent of the work conducted, this article comprises two sections: In Part 1 of this work, we describe the system and its components and use examples for testing it. In Part 2 we will study in more detail the emissions of the sample fleet using the system and will make comparisons with another emission model. The experimental data for the car simulator is obtained using on-board measuring equipment and laboratory Fourier transform IR (FTIR) measurements with a dynamometer following typical driving cycles. The car simulator uses this data to generate emission factors every second. These emission factors, together with information on car activity and velocity profiles of highways and residential and arterial roads in Mexico City in conjunction with a basic traffic model, provide emissions per second of a sample fleet. A geographical information system is used to localize these road emissions.  相似文献   

17.
The contribution of vehicular traffic to air pollutant concentrations is often difficult to establish. This paper utilizes both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways. The time-series model used generalized additive models (GAMs) and fitted pollutant observations to traffic counts and meteorological variables. A one year period (2004) was analyzed on a seasonal basis using hourly measurements of carbon monoxide (CO) and particulate matter less than 2.5 μm in diameter (PM2.5) monitored near a major highway in Detroit, Michigan, along with hourly traffic counts and local meteorological data. Traffic counts showed statistically significant and approximately linear relationships with CO concentrations in fall, and piecewise linear relationships in spring, summer and winter. The same period was simulated using emission and dispersion models (Motor Vehicle Emissions Factor Model/MOBILE6.2; California Line Source Dispersion Model/CALINE4). CO emissions derived from the GAM were similar, on average, to those estimated by MOBILE6.2. The same analyses for PM2.5 showed that GAM emission estimates were much higher (by 4–5 times) than the dispersion model results, and that the traffic-PM2.5 relationship varied seasonally. This analysis suggests that the simulation model performed reasonably well for CO, but it significantly underestimated PM2.5 concentrations, a likely result of underestimating PM2.5 emission factors. Comparisons between statistical and simulation models can help identify model deficiencies and improve estimates of vehicle emissions and near-road air quality.  相似文献   

18.
ABSTRACT

This study presents a novel method for integrating the output of a microscopic emission modeling approach with a regional traffic assignment model in order to achieve an accurate greenhouse gas (GHG, in CO2-eq) emission estimate for transportation in large metropolitan regions. The CLustEr-based Validated Emission Recalculation (CLEVER) method makes use of instantaneous speed data and link-based traffic characteristics in order to refine on-road GHG inventories. The CLEVER approach first clusters road links based on aggregate traffic characteristics, then assigns representative emission factors (EFs), calibrated using the output of microscopic emission modeling. In this paper, cluster parameters including number and feature vector were calibrated with different sets of roads within the Greater Toronto Area (GTA), while assessing the spatial transferability of the algorithm. Using calibrated cluster sets, morning peak GHG emissions in the GTA were estimated to be 2,692 tons, which is lower than the estimate generated by a traditional, average speed approach (3,254 tons). Link-level comparison between CLEVER and the average speed approach demonstrates that GHG emissions for uncongested links were overestimated by the average speed model. In contrast, at intersections and ramps with more congested links and interrupted traffic flow, the average speed model underestimated GHG emissions. This proposed approach is able to capture variations in traffic conditions compared to the traditional average speed approach, without the need to conduct traffic simulation.

Implications: A reliable traffic emissions estimate is necessary to evaluate transportation policies. Currently, accuracy and transferability are major limitations in modeling regional emissions. This paper develops a hybrid modeling approach (CLEVER) to bridge between computational efficiency and estimation accuracy. Using a k-means clustering algorithm with street-level traffic data, CLEVER generates representative emission factors for each cluster. The approach was validated against the baseline (output of a microscopic emission model), demonstrating transferability across different cities .  相似文献   

19.
Global sulfur emissions from 1850 to 2000   总被引:2,自引:0,他引:2  
Stern DI 《Chemosphere》2005,58(2):163-175
The ASL database provides continuous time-series of sulfur emissions for most countries in the World from 1850 to 1990, but academic and official estimates for the 1990s either do not cover all years or countries. This paper develops continuous time series of sulfur emissions by country for the period 1850-2000 with a particular focus on developments in the 1990s. Global estimates for 1996-2000 are the first that are based on actual observed data. Raw estimates are obtained in two ways. For countries and years with existing published data I compile and integrate that data. Previously published data covers the majority of emissions and almost all countries have published emissions for at least 1995. For the remaining countries and for missing years for countries with some published data, I interpolate or extrapolate estimates using either an econometric emissions frontier model, an environmental Kuznets curve model, or a simple extrapolation, depending on the availability of data. Finally, I discuss the main movements in global and regional emissions in the 1990s and earlier decades and compare the results to other studies. Global emissions peaked in 1989 and declined rapidly thereafter. The locus of emissions shifted towards East and South Asia, but even this region peaked in 1996. My estimates for the 1990s show a much more rapid decline than other global studies, reflecting the view that technological progress in reducing sulfur based pollution has been rapid and is beginning to diffuse worldwide.  相似文献   

20.
Abstract

A methodology for estimating vehicular emissions comprising a car simulator, a basic traffic model, and a geographical information system is capable of estimating vehicle emissions with high time and space resolution. Because of the extent of the work conducted, this article comprises two sections: In Part 1 of this work, we describe the system and its components and use examples for testing it. In Part 2 we will study in more detail the emissions of the sample fleet using the system and will make comparisons with another emission model. The experimental data for the car simulator is obtained using on-board measuring equipment and laboratory Fourier transform IR (FTIR) measurements with a dynamometer following typical driving cycles. The car simulator uses this data to generate emission factors every second. These emission factors, together with information on car activity and velocity profiles of highways and residential and arterial roads in Mexico City in conjunction with a basic traffic model, provide emissions per second of a sample fleet. A geographical information system is used to localize these road emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号