首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a study on the oxidation mechanism of heterocyclic aromatic compounds, some aspects of the atmospheric chemistry of several alkyl derivatives of furan have been investigated. The aim of this work was to identify the products of the reactions of chlorine atoms with 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran. Experiments were performed in two different smog chambers at 296 ± 2 K and 1000 ± 20 mbar of synthetic air. The experimental investigation was carried out using in situ long-path FTIR absorption spectroscopy and both SPME-GC/FID-ECD and SPME-GC/MS as sampling and detection techniques. The major primary products from the addition reaction channel were 4-oxo-2-pentenoyl chloride and formaldehyde for the reactions of 2-methylfuran and 2,5-dimethylfuran; 4-oxo-2-hexenoyl chloride and acetaldehyde for the reaction of 2-ethylfuran and 5-chloro-2(5H)-furanone for the reactions of both 2-methylfuran and 2-ethylfuran. Other minor products were 4-oxo-2-pentenal, 4-oxo-2-hexenal and 3-hexene-2,5-dione for the 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran reactions, respectively. From the abstraction pathway, HCl, furfural, 2-acetylfuran, 5-methylfurfural, maleic anhydride and 5-hydroxy-2(5H)-furanone were detected. The formation of furfural, 2-acetylfuran and 5-methylfurfural confirmed the H-atom abstraction from the alkyl group of 2-methylfuran, 2-ethylfuran and 2,5-dimethylfuran, respectively. This mechanism was not observed in previous studies with OH and NO3 radicals. A mechanism is proposed to explain the main reaction products observed. The observed products confirm that addition of Cl atoms to the double bond of the alkylfuran is the dominant reaction pathway.  相似文献   

2.

Background, aim, and scope  

Unsaturated esters are emitted to the atmosphere from biogenic and anthropogenic sources, including those from the polymer industry. Little information exists concerning the atmospheric degradation of unsaturated esters, which are mainly initiated by OH radicals. Limited information is available on the degradation of alkenes by Cl atoms and almost no data exists for the reactions of unsaturated esters with Cl atoms. This data is necessary to assess the impact of such reactions in maritime environments where, under circumstances, OH radical- and Cl atom-initiated oxidation of the compounds can be important. Rate coefficients for the reactions of chlorine atoms with vinyl acetate, allyl acetate, and n-butyl acrylate have been determined at 298 ± 3 K and atmospheric pressure. The kinetic data have been used in combination with that for structurally similar compounds to infer the kinetic contributions from the possible reaction channels to the overall reaction rate.  相似文献   

3.
[3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] (MX) and chlorinated acetic acids such as dichlorinated acetic acid (DCA) and trichlorinated acetic acid (TCA) have always been the focus of disinfection by-products (DBPs) studies. In order to find out the influences of reaction time, TOC, chlorine dose, pH and temperature on the formation of MX, DCA and TCA, we extracted fulvic acid (FA) from the sediment of Tai Lake, and conducted simulated chlorination of samples rich in FA. Results showed positive relationship between TOC and the yields of MX, DCA and TCA. But the influences of pH, chlorine dose, reaction time, and temperature are quite complex. The optimal chlorination condition for the formation of MX is pH = 2, T = 45 degrees C, C/Cl2 = 1/4, t = 12 h. Lower pH, longer time, greater chlorine dose can result in greater yield of both DCA and TCA, and there is a strong linear relationship between the formation of DCA and TCA.  相似文献   

4.
Tomy GT  Billeck B  Stern GA 《Chemosphere》2000,40(6):679-683
Short chain (C10-C13) polychloro-n-alkanes (sPCAs) mixtures were synthesized by refluxing pure n-alkane (> 99%) with sulfuryl chloride (SO2Cl2) in the presence of UV-light (550 W). The free radical initiated reactions produced analogs containing approximately 4-9 chlorine atoms on each carbon chain. Purification of reaction products was achieved by adsorption chromatography on Florisil. The products were characterized by high-resolution gas chromatography/mass spectrometry (HRGC/MS) operated in the electron capture negative ionization (ECNI) and in electron ionization (EI) modes. Individual standards can now be combined to create standards whose profiles resemble that of environmental samples. Quantification of a known amount of the newly synthesized sPCAs mixture, using an industrial formulation as an external standard, resulted in an overestimation (approximately 28%) in its true value.  相似文献   

5.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3Cl, CH2Cl2, CHCl3, CCl4, C2H3Cl, and C2H5Cl) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-injection incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments. A 99.99-percent destruction efficiency was attained in one second at temperatures ranging from 1280 to 960 K, with CCl4 requiring the highest temperature for destruction and C2H5Cl the lowest. For all compounds except C2H5Cl, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCl3.  相似文献   

6.
Detailed mechanisms are outlined for the chemical reactions involved In the atmospheric removal of four unsaturated chlorinated aliphatic contaminants, allyl chloride, chloroprene, hexachlorocyclopentadiene and vlnylldene chloride. Rate constants estimated from structure-reactivity relationships Indicate rapid removal for all four compounds by reactions with OH (major), ozone, and NO3, with half-lives of 2-16 hrs for removal by reaction with OH. Reaction products of allyl chloride (formaldehyde, chloroacetaldehyde, peroxychloroacetyl nitrate) and vinylidene chloride (formaldehyde, phosgene, chloroacetyl chloride) are consistent with OH addition-Initiated pathways that include Cl atom elimination. The chlorine atoms produced In the OH reaction sequence react rapidly with all four unsaturated compounds, but these reactions are of negligible Importance for atmospheric removal of the four toxic contaminants studied. Analogous mechanisms are discussed for chloroprene (leading to formaldehyde, CH2 = CCICHO, and CICOCHO) and for hexachlorocyclopentadlene (leading to oxalyl chloride and CICOCCI2COCI).  相似文献   

7.
Samples from two Dutch raw water sources were chlorinated in the laboratory at different pH:s and chlorine doses, and were analysed for mutagenic activity and the mutagenic compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Chlorination produced mutagenic activity as well as MX in both waters. The formation of MX was favoured by acidic reaction conditions and high chlorine doses, but in waters treated with excess chlorine at pH 9, no MX was detected. The mutagenicity was approximately on the same level after chlorination of both water types but the MX concentration was significantly higher in the water containing mainly humic material.

MX was found to be quantitatively extracted from acidified waters by the XAD resin adsorption technique.  相似文献   


8.
Phenanthrene is a 3-ring polycyclic aromatic hydrocarbon which exists mainly in the gas-phase in the atmosphere. Recent concern over the presence of 9,10-phenanthrenequinone in ambient particles led us to study the products of the gas-phase reactions of phenanthrene with hydroxyl radicals, nitrate radicals and ozone. The formation yields of 9,10-phenanthrenequinone were measured to be ∼3%, 33±9%, and ∼2% from the OH radical, NO3 radical and O3 reactions, respectively. Calculations suggest that daytime OH radical-initiated and nighttime NO3 radical-initiated reactions of gas-phase phenanthrene may be significant sources of 9,10-phenanthrenequinone in ambient atmospheres. In contrast, the ozone reaction with phenanthrene is unlikely to contribute significantly to ambient 9,10-phenanthrenequinone.  相似文献   

9.
The reactions of chlorine atoms and activated carbon have been studied over the temperature range of 200-400 degrees C using an isothermal flow reactor in conjunction with 337 nm laser photolysis of Cl2. These studies have shown that carbon tetrachloride is the major product, with chloroform, methylene chloride, and methyl chloride being formed in progressively decreasing yields. Trace quantities of methane, ethane, and dichloroethylenes were also observed. Mechanisms of carbon fragmentation by successive addition of chlorine atoms are proposed. The formation of small chlorinated hydrocarbons by the direct reaction of chlorine with carbon may be a key link in both the de novo and precursor pathways of formation of PCDD/F.  相似文献   

10.
This study presents the application of O-(2,3,4,5,6)-pentafluorobenzyl-hydroxylamine hydrochloride (PFBHA) on-fibre derivatisation Solid Phase Microextraction (SPME) to the sampling and quantification of the unsaturated 1,4-dicarbonyl products obtained in the photo-oxidation of furan, 2-methylfuran and 3-methylfuran with HONO: butenedial, 4-oxo-2-pentenal and 2-methylbutenedial, respectively. The use of Proton Transfer Reaction Mass Spectrometry (PTR-MS) is also considered and the advantages of the combined use of both methodologies is discussed. The 1,4 unsaturated dicarbonyl products sampled by SPME were quantified by GC-FID.The experiments were carried out in the EUPHORE outdoor simulation chambers. The results confirm that 1,4-dicarbonyls are the main products of the OH-initiated oxidation of furan and its methylated derivatives, a fact with environmental implications. Molar yields of (1.09 ± 0.41) and (0.90 ± 0.36) were obtained in two experiments of furan photo-oxidation. The yields of 4-oxo-2-pentenal and methylbutenedial were estimated to be (0.60 ± 0.24) and (0.83 ± 0.33) respectively, assuming the same SPME response factor as for butenedial. Furthermore, the unsaturated 1,4-dicarbonyls have also been identified in the chemical characterisation of the aerosols formed in the reactions. The yield of aerosols quantified were (8.5 ± 0.8)% in the photo-oxidation of furan, (1.85 ± 0.18)% in the photo-oxidation of 2-methylfuran and (5.5 ± 0.5)% in the photo-oxidation of 3-methylfuran, at the following concentrations of their precursors: 829 ± 249 ppbV and 748 ± 224 (in two furan experiments), 633 ± 190 in the 2-methylfuran and 641 ± 192 ppbV in the 3-methylfuran experiment.  相似文献   

11.
Goal, Scope and Background Within the non-methane hydrocarbons, alkanes constitute the largest fraction of the anthropogenic emissions of volatile organic compounds. For the case of cyclic alkanes, tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atom reaction rate constants are generally one order of magnitude larger than those of OH. In the present work, the reaction of cyclooctane with Cl atoms has been studied within the temperature range of 279–333 K. Methods The kinetic study has been carried out using the fast flow tube technique coupled to mass spectrometry detection. The reaction has been studied under low pressure conditions, p=1 Torr, with helium as the carrier gas. Results The measured room temperature rate constant is very high, k=(2.63±0.54)×10−10 cm3molecule−1s−1, around 20 times larger than that for the corresponding OH reaction. We also report the results of the rate coefficients obtained at different temperatures: k = (3.5±1.2)×10−10 exp[(−79±110)/T] cm3 molecule−1 s−1 within the range of 279–333 K. This reaction shows an activation energy value close to zero. Discussion Quantitative formation of HCl has been observed, confirming the mechanism through H-atom abstraction. The reactivity of cyclic alkanes towards Cl atoms is clearly dependent on the number of CH2 groups in the molecule, as is shown by the increase in the rate constant when the length of the organic chain increases. This increase is very high for the small cyclic alkanes and it seems that the reactions are approaching the collision-controlled limit for cyclohexane and cyclooctane. Conclusions These results show that gas-phase reaction with Cl in marine or coastal areas is an efficient sink (competing with the gas phase, OH initiated degradation) for the Earth’s emissions of cyclooctane, with a Cl-based lifetime ranging from 11 to 2000 hours, depending on the location and time of day. Recommendations and Perspectives Cl and OH fast reactions with cyclooctane are expected to define the lifetime of cyclooctane emissions to the atmosphere. The degradation of cyclooctane occurs in a short period of time and consequently (under conditions of low atmospheric mass transport), close to the emission sources enabling a significant contribution to local effects, like the formation of photochemical smog. ESS-Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   

12.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with acrylic acid and acrylonitrile have been determined at 298 K and atmospheric pressure. The decay of the organics was followed using a gas chromatograph with a flame ionization detector (GC-FID) and the rate constants were determined using a relative rate method with different reference compounds. Room temperature rate constants are found to be (in cm3 molecule−1 s−1): k1(OH+CH2CHC(O)OH)=(1.75±0.47)×10−11, k2(Cl+CH2CHC(O)OH)=(3.99±0.84)×10−10, k3(OH+CH2CHCN)=(1.11±0.33)×10−11 and k4(Cl+CH2CHCN)=(1.11±0.23)×10−10 with uncertainties representing ±2σ. This is the first kinetic study for these reactions under atmospheric pressure. The rate coefficients are compared with previous determinations taking into account the effect of pressure on the rate constants. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other unsaturated compounds in the literature. In addition, atmospheric lifetimes based on the homogeneous sinks of acrylic acid and acrylonitrile are estimated and compared with other tropospheric sinks for these compounds.  相似文献   

13.
A silent electric discharge was applied to decompose halogenated methanes including CCl4, CHCl3, CFCl3, CF2Cl2 and CF3Cl, in argon-containing gas mixtures. The decompositions of the target compounds were studied in static reactors at a fixed electric field and room temperature. The reaction products were analyzed by FT-IR spectroscopy, gas chromatography and UV spectrophotometry. The results demonstrated, that the radical-type decomposition of chlorofluoromethanes led to products formed by realignment of the halogen atoms. The decomposition of CCl4 was faster than that of the cholorofluoromethanes, and produced perchloroethane and chlorine. CHCl3 exhibited the highest decomposition rate and produced a large variety of products.  相似文献   

14.
Rate constants for the atmospheric reactions of 1-methyl-2-pyrrolidinone with OH radicals, NO3 radicals and O3 have been measured at 296±2 K and atmospheric pressure of air, and the products of the OH radical and NO3 radical reactions investigated. Using relative rate techniques, rate constants for the gas-phase reactions of OH and NO3 radicals with 1-methyl-2-pyrrolidinone of (2.15±0.36)×10-11 cm3 molecule-1 s-1 and (1.26±0.40)×10-13 cm3 molecule-1 s-1, respectively, were measured, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference compounds. An upper limit to the rate constant for the O3 reaction of <1×10-19 cm3 molecule-1 s-1 was also determined. These kinetic data lead to a calculated tropospheric lifetime of 1-methyl-2-pyrrolidinone of a few hours, with both the daytime OH radical reaction and the nighttime NO3 radical reaction being important loss processes. Products of the OH radical and NO3 radical reactions were analyzed by gas chromatography with flame ionization detection and combined gas chromatography–mass spectrometry. N-methylsuccinimide and (tentatively) 1-formyl-2-pyrrolidinone were identified as products of both of these reactions. The measured formation yields of N-methylsuccinimide and 1-formyl-2-pyrrolidinone were 44±12% and 41±12%, respectively, from the OH radical reaction and 59±16% and ∼4%, respectively, from the NO3 radical reaction. Reaction mechanisms consistent with formation of these products are presented.  相似文献   

15.
BACKGROUND: The photolysis of pesticides is of high current interest since light is one of the most important abiotic factors which are responsible for the environmental fate of these substances and may induce their conversion into noxious products. The action of light can also be mediated by oxygen and synthetic or naturally occurring substances which act as sensitizers. Our objective in this study was to investigate the photochemical behaviour of the systemic fungicide furalaxyl in the presence of oxygen and various sensitizers, and to compare the toxicity of the main photoproduct(s) to that of the parent compound. Previous reports on the direct photolysis of the pesticide demonstrated a very slow degradation and the only identified photoproducts were N-2,6-xylyl-D,L-alaninare and 2,6-dimethylaniline. METHODS: Solutions of furalaxyl in CH3CN were photooxygenate using a 500W high-pressure mercury lamp (through a Pyrex glass filter, lambda>300 nm) or a 650W halogen lamp or sunlight and the proper sensitizer. When sunlight was used, aqueous solutions were employed. The photodegradation was checked by NMR and/or GC-MS. The photoproducts were spectroscopically evidenced and, when possible, isolated chromatographically. Acute toxicity tests were performed on the rotifer Brachionus calyciflorus, the crustacean cladoceran Daphnia magna and the anostracan Thamnocephalus platyurus, while chronic toxicity tests (sublethal endpoints) comprised a producer, the alga Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia, as a consumer. RESULTS AND DISCUSSION: In the presence of both oxygen and sensitizer, furalaxyl underwent rapid photochemical transformations mainly to N-disubstituted formamide, maleic anhydride and a 2(5H)-furanone derivative. The formation of these products was rationalized in terms of a furan endoperoxide intermediate derived from the reaction of furalaxyl with active dioxygenated species (singlet oxygen, superoxide anion or ground state oxygen). The 2(5H)-furanone exhibited a higher toxicity than the parent compound. CONCLUSION: This work reports the first data on the photosensitized oxygenation of furalaxyl with evidence of the high tendency of the pesticide to undergo photodegradation under these conditions leading, among other things, to a 2(5H)-furanone, which is more toxic than the starting furalaxyl towards aquatic organisms. RECOMMENDATIONS AND OUTLOOK: Investigation highlights that the photolytic fate of a pesticide, although quite stable to direct photoreaction due to its low absorption of solar radiation at ground level, can be significantly influenced in the environment by the presence of substances with energy or electron-transfer properties as natural dyes, e.g. chlorophyll, or synthetic pollutants, e.g. polycyclic aromatic hydrocarbons (PAH).  相似文献   

16.
Products of the gas-phase reactions of OH radicals (in the presence of NO) and O3 with the biogenic organic compound 2-methyl-3-buten-2-ol have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography–mass spectrometry (GC-MS), gas chromatography with Fourier transform infrared detection (GC-FTIR), in situ FT-IR spectroscopy and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS/MS). Formaldehyde, 2-hydroxy-2-methylpropanal and acetone were identified from both the OH radical and O3 reactions, glycolaldehyde and organic nitrate (s) were also observed from the OH radical reaction, and the OH radical formation yield from the O3 reaction was measured. The formaldehyde, 2-hydroxy-2-methylpropanal, glycolaldehyde, acetone and organic nitrate yields from the OH radical reaction were 0.29±0.03, 0.19±0.07, 0.61±0.09, 0.58±0.04 and 0.05±0.02, respectively, and the formaldehyde, 2-hydroxy-2-methylpropanal and OH radical formation yields from the O3 reaction were 0.29±0.03, 0.30±0.06 (0.47 from FT-IR measurements) and 0.19 (uncertain to a factor of 1.5), respectively. Acetone was also observed from the O3 reaction, but appeared to be formed from secondary reactions. Reaction mechanisms are presented and discussed.  相似文献   

17.
Yamamoto T  Yasuhara A 《Chemosphere》2002,46(8):1215-1223
The chlorination of bisphenol A (BPA) in aqueous media was investigated in order to describe the degradation profile of this compound and the formation of chlorinated products. Aqueous solutions of BPA (approx. 1 mg/l) were chlorinated by sodium hypochlorite solution at room temperature and under weakly alkaline conditions. Chlorinated compounds were extracted with dichloromethane and determined by gas chromatography/mass spectrometry (GC/MS). BPA was consumed completely within 5 min of chlorination, when the initial chlorine concentration was 10.24 mg/l (molar ratio to BPA, 58.7). On the other hand, when the initial chlorine concentration was 1.03 mg/l (molar ratio, 6.56), 9.3% of BPA still remained after 60 min chlorination. Five chlorinated BPA congeners, 2-chlorobisphenol A (MCBPA), 2,6-dichlorobisphenol A (2,6-D2CBPA), 2,2'-dichlorobisphenol A (2,2'-D2CBPA), 2,2',6-trichlorobisphenol A (T3CBPA) and 2,2', 6,6'-tetrachlorobisphenol A (T4CBPA) were formed in the earlier stages of chlorination. Several chlorinated phenolic compounds, 2,4,6-trichlorophenol (T3CP), 2,6-dichloro-1,4-benzoquinone (D2CBQ), 2,6-dichloro-1,4-hydroquinone (D2CHQ), C9H10Cl2O2, C9H8Cl2O and C10H12Cl2O2, were also formed by further chlorination.  相似文献   

18.
Basic physical-chemical properties of five bromine and chlorine containing mixed halogenated dimethyl bipyrroles (HDBPs) were determined using established methods. Subcooled liquid vapour pressures (P(o)(L,25)), aqueous solubilities (S(w,25)), and octanol/water partition coefficients (K(ow)) were determined using the gas chromatography-retention time, generator column, and slow-stirring methods, respectively. Henry's Law constants (H25) were estimated using experimentally-derived P(o)(L) and S(w,25) data. Values of all four properties were generally similar to those reported for other polyhalogenated aromatic compounds [P(o)(L,25) = (7.55-191) x 10(-6) Pa; S(w,25) = (1.0-1.9) x 10(-5) g/l; log K(ow) = 6.4-6.7; H25 = 0.0020-0.14 Pa m3/mol]. The effect of replacing a chlorine with a bromine atom significantly decreased P(o)(L,25) (log P(o)(L,25) = -0.4197 (# bromine atoms) - 2.643, p<0.01) and H25 (log H25 = -0.508 (# bromine atoms) + 0.394, p<0.02). There were no significant effects of bromine/chlorine substitution on S(w,25) or K(ow). A simple Level I equilibrium partitioning model predicted the environmental behaviour of HDBPs to be similar to a tetrabrominated diphenyl ether. Only slight differences in behaviour amongst HDBP congeners were predicted since substitution of a bromine for a chlorine (Cl/Br substitution) atom had less effect than H/Cl or H/Br substitution on P(o)(L,25), S(w,25), H25, and K(ow).  相似文献   

19.
Duo W  Leclerc D 《Chemosphere》2007,67(9):S164-S176
Both organic chlorine (e.g. PVC) and inorganic chlorides (e.g. NaCl) can be significant chlorine sources for dioxin and furan (PCDD/F) formation in combustion processes. This paper presents a thermodynamic analysis of high temperature salt chemistry. Its influence on PCDD/F formation in power boilers burning salt-laden wood waste is examined through the relationships between Cl2, HCl, NaCl(g) and NaCl(c). These analyses show that while HCl is a product of combustion of PVC-laden municipal solid waste, NaCl can be converted to HCl in hog fuel boilers by reactions with SO2 or alumino-silicate materials. Cl2 is a strong chlorinating agent for PCDD/F formation. HCl can be oxidized to Cl2 by O2, and Cl2 can be reduced back to HCl by SO2. The presence of sulphur at low concentrations thus enhances PCDD/F formation by increasing HCl concentrations. At high concentrations, sulphur inhibits de novo formation of PCDD/Fs through Cl2 reduction by excess SO2. The effect of NH3, CO and NOx on PCDD/F formation is also discussed. A semi-empirical kinetic model is proposed. This model considers both precursor and de novo formation mechanisms. A simplified version is used as a stack emission model. The kinetic model indicates that stack dioxin emissions will increase linearly with decreasing electrostatic precipitator (ESP) efficiency and exponentially with increasing ESP temperature.  相似文献   

20.
The laser photolysis/laser induced fluorescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) was been detected via LIF at 272 nm from reactions of elemental Hg with Cl atoms generated from the 193 nm photolysis of carbon tetrachloride. While the formation of HgCl was too fast to be observed on millisecond time scales, the kinetics of the consumption of HgCl have been determined at temperatures characteristic of post-combustion conditions. Rate coefficients and Arrhenius parameters for the reaction of HgCl with Cl2, HCl and Cl atoms were determined. The reaction of HgCl with Cl2 was the fastest reaction studied, while the reaction of HgCl with HCl was the only reaction to show any measurable temperature dependence. Estimates of the rate coefficient for the reaction Hg + Cl --> HgCl were determined using a modeling approach. Comparisons of these new measurements with model predictions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号