首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We report the first measurements of the mixing ratios of acetic (CH3COOH) and formic (HCOOH) acids in the air filling the pore spaces of the snowpacks (firn air) at Summit, Greenland and South Pole. Both monocarboxylic acids were present at levels well above 1 ppbv throughout the upper 35 cm of the snowpack at Summit. Maximum mixing ratios in Summit firn air reached nearly 8 ppbv CH3COOH and 6 ppbv HCOOH. At South Pole the mixing ratios of these acids in the top 35 cm of firn air were also generally >1 ppbv, though their maximums barely exceeded 2.5 ppbv of CH3COOH and 2.0 ppbv of HCOOH. Mixing ratios of the monocarboxylic acids in firn air did not consistently respond to diel and experimental (fast) variations in light intensity, unlike the case for N oxides in the same experiments. Air-to-snow fluxes of CH3COOH and HCOOH apparently support high mixing ratios (means of (CH3COOH/HCOOH) 445/460 and 310/159 pptv at Summit and South Pole, respectively) in air just above the snow during the summer sampling seasons at these sites. We hypothesize that oxidation of carbonyls and alkenes (that are produced by photo- and OH-oxidation of ubiquitous organic compounds) within the snowpack is the source of the monocarboxylic acids.  相似文献   

2.
Sonic anemometer turbulence measurements were made at Summit, Greenland during summer 2004 and spring 2005. These measurements allow for the characterization of the variability of the atmospheric boundary layer at this site by describing seasonal and diurnal changes in sensible heat flux and boundary layer stability as well as providing estimates of mixing layer height. Diurnal sensible heat fluxes at Summit ranged from −18 to −2 W m−2 in the spring and from −7 to +10 W m−2 in the summer. Sustained stable surface layer conditions and low wind speeds occured during the spring but not during the summer months. Unstable conditions were not observed at Summit until late April. Diurnal cycles of convective conditions during the daytime (0700–1700 h local time) were observed throughout July and August. Boundary layer heights, which were estimated for neutral to stable conditions, averaged 156 m for the spring 2005 observations. Comparisons of the boundary layer characteristics of Summit with those from South Pole, Antarctica, provide possible explanations for the significant differences in snowpack and surface-layer chemistry between the two sites.  相似文献   

3.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

4.
A four and a half year study of ozone concentrations in the Central Mediterranean was carried out between January 1997 and August 2001 on a background monitoring station located on the island of Gozo midway between Southern Europe and North Africa.Seasonal and diurnal variations of background ozone are documented. They show the existence of seasonal cycles with a primary maximum in spring followed by a secondary, more variable maximum in summer which indicates that photochemically produced ozone is being transported over the Mediterranean to the rural island of Gozo. Although peak ozone concentrations seldom exceeded 100 ppbv during summer, the background ozone-mixing ratios (as monthly averages) are some of the highest values which can be found at low latitude sites throughout the world. An increasing trend in the annual background ozone concentration from 48.2 ppbv in 1997 to 52.2 ppbv in 2000 is observed. During wintertime the average ozone mixing-ratio (as monthly averages) of 44 ppbv in December is approximately twice as high as on the European continent. This may imply that on Malta, due to higher average ozone concentrations between autumn and spring (the main growing season), crop damage of high economic value may occur.  相似文献   

5.
PM10 aerosols at McMurdo Station, Antarctica were sampled continuously during the austral summers of 1995–1996 and 1996–1997. PM10 (particles with aerodynamic diameters less than 10 μm) mass concentrations at Hut Point, located less than 1 km from downtown McMurdo, averaged 3.4 μg m−3, more than an order of magnitude lower than the USEPA annual average National Ambient Air Quality Standard (NAAQS) of 50 μg m−3. Concentrations of methanesulfonate and nitrate were similar to those measured at other Antarctic coastal sites. Non-sea-salt sulfate (NSS) concentrations on Ross Island were higher than those found at other coastal locations. The average elemental carbon concentration (129 ng m−3) downwind of the station was two orders of magnitude higher than those measured at remote coastal and inland Antarctic sites during summer. Average sulfur dioxide concentrations (746 ng m−3) were 3–44 times higher than those reported for coastal Antarctica. Concentrations of Pb and Zn were 17 and 46 times higher than those reported for the South Pole. A methanesulfonate to biogenic sulfate ratio (R) of 0.47 was derived that is consistent with the proposed temperature dependence of R.  相似文献   

6.
Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers 7Be and 210Pb, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are ∼20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212 m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed ∼40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer 7Be. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to ∼3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels.  相似文献   

7.
The uptake of atmospheric ozone to the polar, year-round snowpack on glacial ice was studied at Summit, Greenland during three experiments in 2003, 2004, and 2005. Ozone was measured at up to three depths in the snowpack, on the surface, and above the surface at three heights on a tower along with supporting meteorological parameters. Ozone in interstitial air decreased with depth, albeit ozone gradients showed a high variation depending on environmental conditions of solar radiation and wind speed. Under low irradiance levels, up to 90% of ozone was preserved up to 1 m depth in the snowpack. Ozone depletion rates increased significantly with the seasonal and diurnal cycle of solar irradiance, resulting in only 10% of ozone remaining in the snowpack following solar noon during summertime. Faster snowpack air exchange from wind pumping resulted in smaller above-surface-to-within snowpack ozone gradients. These data indicate that the uptake of ozone to polar snowpack is strongly dependent on solar irradiance and wind pumping. Ozone deposition fluxes to the polar snowpack are consequently expected to follow incoming solar radiation levels and to exhibit diurnal and seasonal cycles. The Summit observations are in stark contrast to recent findings in the seasonal, midlatitude snowpack [Bocquet, F., Helmig, D., Oltmans, S.J., 2007. Ozone in the mid-latitude snowpack at Niwot Ridge, Colorado. Arctic, Antarctic and Alpine Research, in press], where mostly light-independent ozone behavior was observed. These contrasting results imply different ozone chemistry and snowpack–atmosphere gas exchange in the snow-covered polar, glacial conditions compared to the temperate, mid-latitude environment.  相似文献   

8.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

9.
The atmospheric mixing ratios of methacrolein (MACR) and methyl vinyl ketone (MVK), the two specific products from isoprene oxidation in the atmosphere, were measured in Beijing from March to November, 2006. Distinct amounts of MACR and MVK were detected during vegetable growing seasons from April to October with ambient levels of 0.11–0.67 ppbv and 0.19–1.36 ppbv, respectively. The reacted isoprene and its ozone formation potentials (OFPs) in Beijing were evaluated in the range of 0.49–3.46 ppbv and 6.4–44.7 ppbv, respectively, from April to October. OFP of the reacted isoprene accounted for 10.6–23.6% of the total OFPs of VOCs (including carbonyls and isoprene) and 6.38–29.9% of the photo-chemically produced ozone. The maximum OFP of the original emitted isoprene prior to its photo-oxidation was calculated as 56.0 ppbv in August. The contribution from the reacted isoprene in Beijing to HCHO formation was also estimated to be in the range of 0.35–2.45 ppbv from April to October, which accounted for 4.6–11.5% of ambient HCHO.  相似文献   

10.
Ozone peaks with mixing ratios as high as 138 ppbv were observed in the lower troposphere (2.5–4.5 km) over Hong Kong in spring. Simultaneously observed high humidity suggests that this enhanced ozone was not the result of transport from the upper troposphere. Back trajectory analysis suggests that these enhancements resulted from lateral transport. Air masses arriving at the altitude of the ozone peaks appear to have passed over continental Southeast Asia where the bulk of biomass burning occurs at this time of the year (February–April). We hypothesize that biomass burning in this region provided the necessary precursors for the observed ozone enhancement. As far as we know this is the first observation of highly enhanced ozone layers associated with biomass burning in continental Southeast Asia.  相似文献   

11.
Unique daily measurements of water-soluble organics in fine (<2 μm) and coarse (>2 μm) aerosols were conducted at Alert in the Canadian Arctic in winter to spring of 1992. They yield insight into photochemical production and loss of organics during long-range transport and ozone depletion events following polar sunrise. Comprehensive analyses of α, ω-dicarboxylic acids (C2–C12), ω-oxocarboxylic acids (C2–C9) and α-dicarbonyls (C2, C3) as well as pyruvic acid and aromatic (phthalic) diacid were conducted using GC and GC/MS techniques. Oxalic (C2) acid was generally the dominant diacid species in both fine and coarse fractions, followed by malonic (C3) and succinic (C4) acids. Concentrations of total diacids in the fine aerosol fraction (0.2–64 ng m−3) were 5–60 times higher than those in the coarse fraction (0.01–3 ng m−3). After polar sunrise in early-March, the total concentration of fine aerosol diacids increased by a factor of 3–5 while the coarse mode did not change significantly. From dark winter to sunlit spring, temporal changes in correlations and ratios of these water-soluble organics to vanadium and sulfate measured simultaneously suggest that atmospheric diacids and related organic compounds are largely controlled by long-range atmospheric transport of polluted air during winter, but they are significantly affected by photochemical production. The latter can occur in sunlight either during transport to the Arctic or during photochemical events associated with surface ozone depletion and bromine chemistry near Alert in spring. Conversion of gaseous precursors to particulate matter via photochemical oxidation was intensified at polar sunrise, resulting in a peak in the ratio of total diacids to V. During ozone depletion events, complex patterns are indicated in photochemical production and loss depending on the diacid compound. Unsaturated (maleic and phthalic) diacids were inversely correlated with particulate Br whereas saturated diacids (C2–C4) positively correlated with particulate Br. These results suggest that Br chemistry associated with ozone depletion leads to degradation of unsaturated diacids and to the production of smaller saturated diacids.  相似文献   

12.
Surface O3 and CO were measured at Cape D’Aguilar, Hong Kong during the period of January 1994 to December1996 in order to understand the temporal variations of surface O3 and CO in East Asia–West Pacific region. The isentropic backward trajectories were used to isolate different air masses reaching the site and to analyze the long-range transport and photochemical buildup of O3 on a regional scale. The results show that the diurnal variation of surface O3 was significant in all seasons with daily O3 production being about 20 ppbv in fall and 10 ppbv in winter, indicating more active photochemical processes in the subtropical region. The distinct seasonal cycles of O3 and CO were found with a summer minimum (16 ppbv)–fall maximum (41 ppbv) for O3 and a summer minimum (116 ppbv)–winter maximum (489 ppbv) for CO. The isentropic backward trajectory cluster analyses suggest that the air masses (associated with regional characteristics) to the site can be categorized into five groups, which are governed by the movement of synoptic weather systems under the influence of the Asian monsoon. For marine-originated air masses (M-SW, M-SE and M-E, standing for marine-southwest, marine-southeast and marine-east, respectively) which always appear in summer and spring, the surface O3 and CO have relatively lower mixing ratios (18, 16 and 30 ppbv for O3, 127, 134 and 213 ppbv for CO), while the continental air masses (C-E and C-N, standing for continent-east and continent-north, respectively) usually arrive at the site in winter and fall seasons with higher O3 (43 and 48 ppbv) and CO (286 and 329 ppbv). The 43 ppbv O3 and 286 ppbv CO are representative of the regionally polluted continental outflow air mass due to the anthropogenic activity in East Asia, while 17 ppbv O3 and 131 ppbv CO can be considered as the signature of the approximately clean marine background of South China Sea. The very high CO values (461–508 ppbv) during winter indicate that the long-range transport of air pollutants from China continent is important at the monitoring site. The fall maximum (35–46 ppbv) of surface O3 was believed to be caused by the effects of the weak slowly moving high-pressure systems which underlie favorable photochemical production conditions and the long-range transport of aged air masses with higher O3 and its precursors.  相似文献   

13.
We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO2 and N2O but indicate substantially larger emissions of CH4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes.  相似文献   

14.
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%.  相似文献   

15.
Measurement of ambient gas-phase total peroxides was performed at the summit of Mount Tai (Mt. Tai, 1534 m above sea level) in central-eastern China during March 22–April 24 and June 16–July 20, 2007. The hourly averaged concentration of peroxides was 0.17 ppbv (± 0.16 ppbv, maximum: 1.28 ppbv) and 0.55 ppbv (± 0.67 ppbv, maximum: 3.55 ppbv) in the spring and summer campaigns, respectively. The average concentration of peroxides at Mt. Tai, which is in a heavily polluted region, was much lower than hydrogen peroxide measurements made at some rural mountain sites, suggesting that significant removal processes took place in this region. An examination of diurnal variation and a correlation analysis suggest that these removal processes could include chemical suppression of peroxide production due to the scavenging of peroxy and hydroxy radicals by high NOx, wet removal by clouds/fogs rich in dissolved sulfur dioxide which reacts quickly with peroxides, and photolysis. These sinks competed with photochemical sources of peroxides, resulting in different mean concentrations and diurnal pattern of peroxides in the spring and summer. A principal component analysis was conducted to quantify the major processes that influenced the variation of peroxide concentrations. This analysis shows that in the spring photochemical production was an important source of peroxides, and the major sink was scavenging during upslope transport of polluted and humid air from the lower part of the planetary boundary layer (PBL) and wet removal by synoptic scale clouds. During the summer, highly polluted PBL air (with high NOx) was often associated with very low peroxides due to the chemical suppression of HO2 by high NOx and wet-removal by clouds/fogs in this sulfur-rich atmosphere, especially during the daytime. Higher concentrations of peroxides, which often appeared at mid-nighttime, were mainly associated with subsidence of air masses containing relatively lower concentrations of NOy.  相似文献   

16.
In this paper ozone measurements carried out at six alpine and prealpine sites, located in the Italian region of Central Alps are shown. The stations are placed at altitudes between 800 and 1900 m a.s.l., far away from local sources of pollution. Ozone concentrations appear to be quite uniform, with summer mean values varying from 40 to 47 ppb and winter ones from 19 to 35 ppb. The number of hours exceeding the 75 and 100 ppb WHO thresholds and the AOT40 (Average Over Threshold 40 ppb of ozone) are evaluated for the growing season. The temporal variability of weekly ozone cycle at alpine stations provides useful informations to assess an emission control strategy.  相似文献   

17.
Ozone profiles are often used to investigate day-to-day and year-to-year variability in origins of free tropospheric ozone. With this in mind, more than 50 ozonesonde launches were conducted in Beltsville, MD, during the summers of 2004 through 2007. Budgets of free tropospheric ozone were calculated for each ozone profile in the four summers using a laminar identification (LID) method and unusual episodes were analyzed with respect to meteorological variables. The laminar method showed that stratosphere-to-troposphere transport (ST) accounted for greater than 50% of the free tropospheric ozone column on 17% of days sampled, a more pronounced influence than regional convective and lightning (RCL) sources. The ST origins were confirmed with trajectories, and tracers (water vapor and potential vorticity). The amount of free tropospheric ozone from ST and RCL sources varied from year-to-year (up to 13%) and can be explained by differences in mean meteorological patterns. On average, almost 30% of the free tropospheric column was attributed to ST influence, about twice as much as RCL, although the LID method may not capture weeks-old lightning influences as in a chemical model. The prevalence of ST ozone in summertime Beltsville soundings was similar to six sounding sites in the IONS-04 campaign [Thompson, A.M., et al., 2007b. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 1. Summertime upper tropospheric/lower stratosphere ozone over northeastern North America. J. Geophys. Res. 112, D12S12; Thompson, A.M., et al., 2007c. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res. 112, D12S13.] and to statistics from a 30 year climatology of European soundings [Collette, A., Ancellet, G., 2005. Impact of vertical transport processes on the tropospheric ozone layering above Europe. Part II: Climatological analysis of the past 30 years. Atmos. Environ. 39, 5423–5435]. The Beltsville record also demonstrated the value of soundings for air quality forecasting in an urban area. The 22 nighttime soundings collected over Beltsville in 2004–2007 can be divided into distinct polluted and unpolluted subsets, the former 20 ppbv higher in residual layer ozone (1 km) than the latter. These distinctions propagated to daytime differences of 10 ppbv at the surface in the Washington, DC, area, with the high-ozone residual layers leading to non-attainment of the National Ambient Air Quality Standard for ozone. More frequent ozone observations aloft appear essential for better understanding ozone variability and for enabling air quality modelers to achieve more accurate ozone forecasts.  相似文献   

18.
The spatial variation of ground level ozone concentrations was investigated for areas of three different scales: (1) an air quality management district (a region about 100×70 km2) in northern Taiwan, (2) the neighborhood (about 2 km in radius) of an air quality monitoring station, and (3) an open field (about 400×600 m2) surrounded by 3- and 4-story buildings in an elementary school. Analysis of data on hourly ozone concentration, obtained at 13 m above the ground at 21 monitoring stations in the air quality management district, showed that the stations downwind of the urban center in the district had significantly higher ozone concentrations. Measurements for 8-h average ozone concentrations at 1.5 m above the ground by passive samplers showed that, in a flat area about 2 km in radius, the ratios of the ozone concentration at open areas to that at the monitoring station (0.86–0.93) were significantly higher than those obtained at areas with higher traffic flow and density of buildings (0.60–0.68). For the open field in an elementary school, the 8-h average ozone concentrations at 1.5 m above the ground at sites less than 10 m from the nearest building were considerably lower than those at sites farther away from buildings. The results indicated that, in areas of small scales, the spatial distributions of ozone concentration were highly non-uniform and there were appreciable day-to-day variability in spatial distribution. Such variability should be taken into account in determining the extent to which an individual is exposed to ozone.  相似文献   

19.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

20.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号