首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deposition of sulfur dioxide on growing vegetation is affected by diverse environmental factors, many of which undergo large diurnal and spatial variations. The aerodynamic resistance to vertical transfer in the surface boundary layer can be formulated in terms of the friction velocity, height of observation, vertical heat flux, and surface roughness. Also important are the resistance in the air layer closest to the surface elements and, in dry vegetation, the average stomatal resistance of the plants. The latter variable is among the most difficult to estimate, but over many agricultural field crops like those in the midwestern U.S., a typical minimum value of average stomatal resistance to SO2 transfer is about 0.7 s cm-1, as is indicated by various experimental data. The deposition velocity can be estimated as the inverse of the sum of the resistances of the layers, necessarily down to where the concentrations are zero; in the surface boundary layer, any of the various resistances might be dominant. Above the surface layer, the micrometeorological relationships are known with less certainty, but reasonable approximations indicate that during unstable conditions the resistance to transfer is very small at heights of several tens of meters and during stable conditions the aerodynamic resistance is very large aloft.  相似文献   

2.
A crosswind integrated K-model with wind- and K-profiles described by Monin-Obukhov similarity expressions is solved for a continuous surface release to yield the vertical spread of the plume as a function of the surface roughness z0 and the Monin-Obukhov length L for a given downwind distance. The vertical spread of the plume is translated into σz, and lines were traced in a (z0, L) plane for which the σz of the K-model matched the corresponding σz of Pasquill's system. By this technique a new classification scheme is constructed. Knowing z0 and L, the scheme tells which σz curve in the Pasquill system should be used to describe the dispersion.This dispersion classification scheme is used to organize 3 years of data from two meteorological masts, one placed directly at a shoreline and the other roughly 1 km inland. Differences in the dispersion climatology over land and water are studied by averaging the data selectively. The large differences for water and land surfaces between the seasonal and diurnal variation of the dispersion class distributions are illustrated. It is found that the water surface influences the dispersion climatology as far as 20 km inland.  相似文献   

3.
The shelter effect of a windbreak protects aggregate piles and provides a reduction of particle emissions in harbours. RANS (Reynolds-averaged Navier–Stokes equations) simulations using three variants of kε (standard k–ε, RNG k–ε and realizable k–ε) turbulence closure models have been performed to analyse wind flow characteristics behind an isolated fence located on a flat surface without roughness elements. The performance of the three turbulence models has been assessed by wind tunnel experiments. Cases of fences with different porosities (φ) have been evaluated using wind tunnel experiments as well as numerical simulations. The aim is to determine an optimum porosity for sheltering effect of an isolated windbreak. A value of 0.35 was found as the optimum value among the studied porosities (φ=0, 0.1, 0.24, 0.35, 0.4, 0.5).  相似文献   

4.
A DeHavilland DHC-6 Twin Otter, operated by the National Oceanic and Atmospheric Administration, was deployed in Tampa, FL to measure aerosols and primary and secondary trace gases in support of the Bay Regional Atmospheric Chemistry Experiment (BRACE). The Twin Otter repeatedly overflew the surface chemistry monitoring super site near Sydney, FL to assess the comparability of surface and airborne datasets and the spatial representativeness of the surface measurements. Prior to comparing the chemical datasets, we evaluated the comparability of the standards used to calibrate surface and airborne detectors, as well as the uniformity of wind fields aloft and at the surface. Under easterly flow, when the dearth of significant upwind emission sources promoted chemical homogeneity at Sydney, trace gas concentrations at the surface and aloft were generally well correlated; R2 ranged from 0.4396 for H2O2 to 0.9738 for O3, and was typically better than 0.70 for NO, NO2, NOY, HNO3, HCHO, and SO2. Mean ratios of aircraft-to-surface concentrations during 10 overflights of Sydney were as follows: 1.002±0.265 (NO), 0.948±0.183 (NO2), 1.010±0.214 (NOY), 0.941±0.263 (HCHO), and 0.952±0.046 (O3). Poorer agreement and larger variability in measured ratios were noted for SO2 (1.764±0.559), HNO3 (1.291±0.391), and H2O2 (1.200±0.657). Under easterly flow, surface measurements at Sydney were representative of conditions over horizontal scales as large as 50 km and agreed well with airborne values throughout the depth of the turbulently mixed boundary layer at mid-day. Westerly flow advected the Tampa urban plume over the site; under these conditions, as well as during transitional periods associated with the development of the land–sea breeze, surface conditions were representative of smaller spatial scales. Finally, we estimate possible errors in future measurement-model comparisons likely to arise from fine scale (or subgrid;<2 km) variability of trace gas concentrations. Large subgrid variations in concentration fields were observed downwind of large emission point sources, and persisted across multiple model grid cells (distances>4 km) in coherent plumes. Variability at the edges of the well-mixed urban plume, and at the interface of the land–sea breeze circulation, was significantly smaller. This suggests that even a failure of modeled wind fields to resolve the sea breeze return can induce moderate, but not overwhelming, errors in simulated concentration fields and dependent chemical processes.  相似文献   

5.
A model has been constructed of the dynamics and microphysics of a hill cap cloud. This has been used to investigate the aqueous phase oxidation of SO2 in the cloud droplets and the subsequent turbulent deposition of chemical species onto the hill surface. It is suggested that the dominant oxidant is H2O2 in these clouds and that therefore the process is likely to be oxidant limited. The amount of sulphate produced is comparable to that found in cloud condensation nuclei typically found over the U.K. and elsewhere away from strong local sources of sulphate aerosol. Ammonia concentrations are very important as they alter the cloud water pH and hence the solubility of SO2.Turbulent or ‘occult’ deposition is very sensitive to wind speed, the stability profile of the atmosphere and to the surface roughness. In a supercritical flow regime the occult deposition is a maximum just on the lee of the hill.  相似文献   

6.
This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.  相似文献   

7.
A numerical model was developed to simulate gaseous diffusion in complicated terrain. This model calculates the air flow as a potential flow by the Boundary Element Method, and gaseous diffusion by an analytical Gaussian equation in the potential flow. Plume spreads σy and σz are modified by multiregression equations derived from wind tunnel experiments, and the terrain height is elongated depending on the atmospheric stability.First, tracer data from Cinder Cone Butte in the U.S. measured by the U.S.-EPA were predicted by the model in order to examine the prediction accuracy under stable conditions. The averaged ratio of the observed concentration to predicted concentration for 12 runs was better than a factor of 10. Next, tracer data from the Geysers area in the U.S. measured by the U.S.-DOE were used to examine the prediction accuracy under neutral conditions. The ratio of the observed concentration to predicted concentration for two runs under neutral conditions was better than factor of two at most locations, but prediction capability is poor in blocked or separated flow conditions.  相似文献   

8.
A mass transfer approach is used in developing a practical mathematical model of gaseous pollutant uptake by leaves in which a series of resistances is summed across a concentration difference. The body of information presented in this paper is directed to plant pathologists or physiologists in the field of vegetal-pollutant effects and to people interested in the natural removal of air pollutants by vegetation. Correlations are given to calculate the aerodynamic and the stomatal resistances to uptake, while both a qualitative investigation and quantitative estimates are made of the mesophyllic resistance. The factors which control the aerodynamic resistance, ra, are leaf size and wind speed, while the leaf physiology is the determinant of the stomatal resistance, rs . It is noted that the chemical reaction rate and pollutant diffusivity in the mesophyll control the mesophyllic resistance, rm, though the overall gas phase mesophyllic resistance, Hrm, is strongly a function of pollutant solubility in water. Finally, the overall model is compared to earlier experimental work on vegetal uptake of SO2.  相似文献   

9.
Deposition processes of particles with dry diameter larger than about 10 μm are dominated by gravitational settling, while molecular diffusion and Brownian motion predominate the deposition processes of particles smaller than 0.1 μm in dry diameter. Many air pollution derived elements exhibit characteristics common to sub-micron particles. The objective of the present study is to examine the effects of meteorological conditions within the turbulent transfer layer on the deposition velocity of particles with dry diameter between 0.1 and 1 μm. It is for these sub-micron particles that particle growth by condensation in the deposition layer, the broken water surface effect and the enhanced transfer process due to atmospheric turbulence in the turbulent transfer layer play important roles in controlling the particle deposition velocity. Results of the present study show that the `dry air’ assumption of Williams’ model is unrealistic. Effects of ambient air relative humidity and water surface temperature cannot be ignored in determining the deposition velocity over a water surface. Neglecting effects of ambient air relative humidity and water surface temperature will result in defining atmospheric stability incorrectly. It is found that the largest effect of air relative humidity on deposition velocity occurs at an air–water temperature difference corresponding to the point of `displaced neutral stability'. For a given wind speed of U=5 m s−1 the additive effects of water surface temperature, Tw, changes from 5 to 25°C and ambient air relative humidity variations from 85 to 60%, respectively, lead to a maximum difference in vd of about 20%. For a higher wind speed of 10 m s−1, however, the corresponding change in vd reduces to less than 5%. This is further confirmation that wind speed is one of the strongest variables that governs the magnitude of vd. The present study also found that the broken surface transfer coefficient, kbs, given as a multiple of the smooth surface transfer coefficient, kss, is physically more meaningful than assigning it a constant value independent of particle size. The method used in this study requires only a single level of atmospheric data coupled with the surface temperature measurement. The present method is applicable for determining deposition velocity not only at the conventional measurement height of 10 m but also at any other heights that are different from the measurement height.  相似文献   

10.
This wind-tunnel study has been conducted as part of a collaborative effort to investigate the effect of large surface roughness on the entrainment of air from a neutrally stable simulated atmospheric boundary layer into a continuous dense-gas plume. The present study examined the entrainment rates of dense-gas plumes as they were transported over two surfaces with similar geometry but significantly different roughness lengths (factor of 6). Extensive measurements of the flow and plume structures over a wide range of source Richardson numbers (Ri*) are reported. Carbon dioxide was released from a two-dimensional source in order to obtain a plume with virtually constant Ri*. Over the small roughness, the plume depths were generally large compared with the element heights, whereas over the large roughness, plume depths were comparable with the element heights. Retardation of mean velocities in the lower levels of the dense plumes (with compensating increases in the upper levels) was observed, as well as strong suppression of turbulence over quite large fractions of the boundary-layer depth. These effects increased as Ri* increased. Propagation of dense gas was observed upstream of the source due to gravity spreading. The flow within the plumes was observed to become laminar at the larger Ri*. The primary measurements comprised longitudinal surface concentration profiles. Where the plumes were fully turbulent, the plots of inverse concentration versus downwind distance formed reasonably straight lines. The sought-after entrainment velocities are proportional to the slopes of these lines and were found to diminish quite rapidly with Ri*. More in-depth analyses and intercomparisons with the results of the other laboratories are contained in a companion paper in this same volume (Briggs et al., 2001, Atmospheric Environment 35, 2265–2284).  相似文献   

11.
Fumigation of a passive plume located in or above the entrainment zone (EZ) into a growing convective boundary layer (CBL) has been simulated by large-eddy simulation (LES). Three non-dimensional parameters, α(=we0/w*0), z0/zi0, and σz0/zi0, are used to classify different cases, where w*0 is the convective velocity scale, we0 the initial entrainment velocity, zi0 the initial CBL height, z0 the initial plume height, and σz0 is the initial plume half-depth. Forty cases have been run and analysed. The crosswind-integrated concentrations have been compared with existing laboratory data from a saline convection tank. The results show that LES is a promising tool to reproduce fumigation processes. With a relatively coarse grid mesh near the EZ, LES derives reliable results that are in a good agreement with the laboratory data. The first parameter, α, containing the effects due to inversion strength, plays an important role in determining C0(T), the ground-level concentration (GLC) as a function of dimensionless time, T. For large α (say >0.03, corresponding to fast entrainment), variation of α gives significant change in C0(T); whereas for a wide range of α between 0.01 and 0.02 (corresponding to slow entrainment), C0(T) is almost independent of α. The starting time of fumigation does not vary significantly with the second parameter, z0/zi0 (relative height of plume), although C0(T) is, in general, smaller for a higher plume. This confirms laboratory findings that the traditional notion of zero fumigation for a high plume (say above 1.10zi) is not correct. The effect of the third parameter, σz0/zi0, is on the magnitude of C0(T); thinner initial plumes have higher GLCs.  相似文献   

12.
Data from the literature on dry deposition of SO2 to various common materials in outdoor atmospheres are reviewed and presented in the context of a theoretical model. The model postulates two resistances to deposition: the aerodynamic resistance, controlled by atmospheric properties; and the surface resistance, controlled by the chemistry of the surface and its moisture layer. Since the dissolution of SO2 is sensitive to pH, buffering of the moisture layer by corrosion products is essential for SO2 deposition to continue. Thus, it is hypothesized that SO2 deposits preferentially on those surfaces that are sensitive to SO2 attack. Based on extant data, estimates of aerodynamic and surface resistances are derived from the literature and maximum "dry" deposition rates for SO2 are estimated. Such information could be used to formulate SO2 dose-response or "damage" functions for certain materials, based on short-term laboratory tests.  相似文献   

13.
A methodology is developed to include wind flow effects in land use regression (LUR) models for predicting nitrogen dioxide (NO2) concentrations for health exposure studies. NO2 is widely used in health studies as an indicator of traffic-generated air pollution in urban areas. Incorporation of high-resolution interpolated observed wind direction from a network of 38 weather stations in a LUR model improved NO2 concentration estimates in densely populated, high traffic and industrial/business areas in Toronto-Hamilton urban airshed (THUA) of Ontario, Canada. These small-area variations in air pollution concentrations that are probably more important for health exposure studies may not be detected by sparse continuous air pollution monitoring network or conventional interpolation methods. Observed wind fields were also compared with wind fields generated by Global Environmental Multiscale-High resolution Model Application Project (GEM-HiMAP) to explore the feasibility of using regional weather forecasting model simulated wind fields in LUR models when observed data are either sparse or not available. While GEM-HiMAP predicted wind fields well at large scales, it was unable to resolve wind flow patterns at smaller scales. These results suggest caution and careful evaluation of regional weather forecasting model simulated wind fields before incorporating into human exposure models for health studies. This study has demonstrated that wind fields may be integrated into the land use regression framework. Such integration has a discernable influence on both the overall model prediction and perhaps more importantly for health effects assessment on the relative spatial distribution of traffic pollution throughout the THUA. Methodology developed in this study may be applied in other large urban areas across the world.  相似文献   

14.
Ozone measurements made from 5 sites in Hong Kong have been analyzed, including those from one upwind, one downwind, and three urban locales. The data are analyzed in terms of the seasonal and diurnal trends. A subset of data in autumn is further analyzed to study the relationship between the ozone spatial pattern and wind flow as well as other meteorological parameters. The results show that averaged ozone levels at most sites exhibit maxima in autumn, which appears to be a unique feature for eastern Asia. On average the daily maximum 1-h concentrations are found to be higher in the western (normally downwind) site than those on the eastern side and in urban areas. Examination of surface wind patterns and other meteorological parameters suggest that elevated ozone concentrations on the western side occur during the days with intense solar radiation, light winds, and in the presence of a unique wind circulation. The wind reversal in the western parts under the “convergence” flow is believed to be an important cause of the high-ozone events observed there. Such wind flow may re-circulate/transport nearby urban plumes (in this case the Hong Kong–Shenzhen urban complex). Examination of chemical data from the western site has shown that averaged afternoon SO2 to NOx ratios on days with wind reversal are larger than those of typical urban Hong Kong and that a significant SO2 enhancement was clearly indicated on several occasions. The SO2 enhancement may be interpreted as being the evidence to suggest the contribution of regional sources and/or Hong Kong’s power plants (both containing high SO2). A case study has shown that when moderately strong northwesterly wind prevails, elevated ozone and SO2 can be transported to western Hong Kong from the inner Pearl Delta region. This study has also indicated that under the impact of ENE winds the eastern side of Hong Kong is not frequently affected by the re-circulating ozone plumes present in the western side.  相似文献   

15.
Experiments in a neutrally stable wind tunnel boundary layer were made for two-dimensional (quasi-line) sources of carbon dioxide dispersing over two types of uniformly spaced (billboard) surface roughness elements. Velocity and concentration measurements were made with each surface roughness over a wide range of source Richardson number by varying carbon dioxide release rate and wind speed. Concentration measurements were made with a FID gas analyzer using an ethane tracer in the source gas, and velocity measurements were made with independent LDV and HWA systems. For each surface roughness, this paper describes the wind tunnel boundary layer and presents alongwind and vertical concentration profiles in the gas plume. Vertical velocity and concentration profiles were measured at selected downwind distances, and the profiles were integrated to confirm the consistency of the measurements with the mass of carbon dioxide released. The data are intended for development of improved vertical turbulent entrainment correlations for use in dense gas dispersion models applied to hazardous chemical consequence analyses.  相似文献   

16.
The standard deviations of wind fluctuations in the horizontal and vertical directions, σθ and σφ, are now used in some pollution dispersion models to estimate the plume spread parameters σy and σz. Methods exist for estimating σθ and σφ when direct measurements are unavailable, using routine weather observations or wind measurements and temperature profiles from meteorological towers. In this paper such estimates are compared with direct measurements made at a height of 56 m, for a sampling time of 1 h, for a range of meteorological conditions. The work was carried out at a site in relatively irregular terrain. This was flat to rolling with a mixed surface cover within 1 km of the tower, with hills rising beyond that distance. Profile measurements were made with robust instruments rather than research grade sensors.Estimates of σφ made during the daytime agreed well with measurements, with a bias in the estimates of less than 0.4°. The r.m.s. differences between estimates and measurements were 1.1° (profile method) and less than 2° (routine weather observations method). Daytime σθ estimates were generally too low (bias 5–6°), although they were positively correlated with the measurements. At night σθ, was severely underestimated, and σφ was also underestimated.  相似文献   

17.
It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8–4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m?2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5–2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m?2. Scale analysis shows that for a slightly soluble gas (e.g., NO2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O3 and CO2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.  相似文献   

18.
The mode of vertical velocity in convective boundary layers (CBLs) is usually negative and the probability distribution function (PDF) of w, Pw, is rarely symmetric except near the top and bottom of CBLs. Consequently, vertical diffusion from elevated sources is usually asymmetric and exhibits a descending mode of concentration, causing higher peak surface concentrations than predicted by Gaussian models. The main concentration (χ) effects, we argue, can be modeled using the simplest of PDF diffusion models, with tracers responding to Pw at the source height with straight line trajectories and simple reflection at the surface and zi, the mixing depth. The critical element is the choice of Pw. Two Pw models are offered, a bi-Gaussian (BG) and a Gaussian-ramp (GR) formulation. Both have some observational support, and the resulting PDF models are mathematically tractable. Analytical solutions for key variables are given; these show some surprising contrasts between the BG and GR models, but both can approximate laboratory and numerical modeling results for ∝χdy patterns. A diverse selection of atmospheric turbulence measurements is presented; for measures that reflect asymmetry in Pw, the data show wide ranges and do not lend support to any particular form of Pw. Recent lidar measurements of oil fog plumes are presented that show a large variability in ∝χdy patterns, even with substantial averaging periods. The only concurrent turbulence measurement that strongly correlates with the observed vertical diffusion of oil fog is the mode of wind elevation angle. A simple adaptation of the BG model is recommended that fits the average peak ∝χdy and distance of occurrence as observed so far.  相似文献   

19.
A series of modifications were implemented in MM5 simulation in order to account for wind along the Santa Clarita valley, a north–south running valley located in the north of Los Angeles. Due to high range mountains in the north and the east of the Los Angeles Air Basin, sea breeze entering Los Angeles exits into two directions. One branch moves toward the eastern part of the basin and the other to the north toward the Santa Clarita valley. However, the northward flow has not been examined thoroughly nor simulated successfully in the previous studies. In the present study, we proposed four modifications to trigger the flow separation. They were (1) increasing drag over the ocean, (2) increasing soil moisture content, (3) selective observational nudging, and (4) one-way nesting for the innermost domain. The Control run overpredicted near-surface wind speed over the ocean and sensible heat flux, in an urbanized area, which justifies the above 1st and 2nd modification. The Modified run provided an improvement in near-surface temperature, sensible heat flux and wind fields including southeasterly flow along the Santa Clarita valley. The improved MM5 wind field triggered a transport to the Santa Clarita valley generating a plume elongated from an urban center to the north, which did not exist in MM5 Control run. In all, the modified MM5 fields yielded better agreement in both CO and O3 simulations especially in the Santa Clarita area.  相似文献   

20.
easurements of the dry deposition velocity (Vd) of hydrogen peroxide (H2O2) and total organic peroxides (ROOH) were made during four experiments at three forested sites. Details and uncertainties associated with the measurement of peroxide fluxes by the flux-gradient method are discussed. The results are compared to those predicted using a bulk-resistance model of the type commonly used in regional photochemical models. Good agreement between the H2O2 Vd measurements and a bulk resistance model is obtained when the model contains a zero surface resistance (Rc) and a common form for the laminar leaf-layer resistance (Rb) based on Schmidt and Prandtl numbers. In this case, a near-zero (<5 s m-1) surface resistance is confirmed for H2O2 within experimental uncertainties. Surface resistances for ROOH were determined to be about 10–15 s m-1 over a coniferous forest and 20–40 s m-1 over a deciduous forest. Higher uncertainties for ROOH prevent a detailed analysis of the differences in Rc among forest types. However, the ratio of deposition velocities (ROOH/H2O2), computed from normalized concentration gradients, ranged from 0.28 to 0.61 (geometric mean) at the three sites. Differences in molecular diffusivities between H2O2 and ROOH can only account for an estimated 16% difference in Vd. Thus, the major constituent of ROOH must also be less soluble and/or less reactive than H2O2, which is consistent with the characteristics of methylhydroperoxide (MHP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号