首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Moderate resolution imaging spectroradiometer (MODIS) data are analyzed over the Indo-Gangetic plain (IGP) to study the effect of aerosol optical depth (AOD) on the water (Reff,w) and ice (Reff,i) cloud effective radius for the period 2001–2005. The temporal variation of Reff,w and Reff,i shows reverse trend as that of AOD for most of the time. The intensity of positive indirect effect (i.e. increase of Reff,w/i with decrease of AOD and vice versa) is the highest in winter (ΔReff,w/ΔAOD∼−9.67 μm and ΔReff,i/ΔAOD∼−12.15 μm), when the role of meteorology is the least. The positive indirect effect is significant in 43%, 37%, 68% and 54% of area for water clouds in winter, pre-monsoon, monsoon and post-monsoon seasons, respectively, whereas the corresponding values for ice clouds are 42%, 35%, 53% and 53% for the four seasons, respectively. On the contrast, Reff,i in some locations shows increment with the increase in AOD (negative indirect effect). The negative indirect effect is significant at 95% confidence level in 7%, 18%, 9% and 6% grids for winter, pre-monsoon, monsoon and post-monsoon seasons, respectively. The restricted spatial distribution of negative indirect effect in IGP shows that the cloud microphysical processes are very complex. Our analyses clearly identify the contrasting indirect effect, which requires further in situ investigations for better understanding of the aerosol–cloud interaction in the region.  相似文献   

2.

Introduction  

The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007.  相似文献   

3.
To study the mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006, both TSP and PM2.5 samples were collected at three sites of northern China in addition to the dry deposition samples collected in an episode in Beijing. 23 elements, 15 ions, and 16 PAHs in each sample were analyzed. The two dust storms in northern China were observed in April 8–10 (DS1) and April 16–18 (DS2). Compared to DS2, DS1 was weaker and more polluted with stronger mixing between crustal and pollutant aerosols during their long-range transport. The concentrations of pollution species, e.g. pollution elements, ions, and PAHs were higher in DS1 than that in DS2, while the crustal species showed adverse variation. The correlation between chemical species and Al and between PAH(4) and PAH(5,6) further confirmed the stronger chemical transformation and aerosol mixing in DS1 than that in DS2. Back trajectory and chemical analysis revealed that in DS1 the air masses at Beijing were mostly from southern or southwestern direction at lower altitude with much more pollution, while in DS2 the air masses were mostly from the northwestern and northern direction with dust mainly, which explained why there was a stronger mixing of dust with pollution aerosol in DS1 than that in DS2 over Beijing.  相似文献   

4.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

5.
The effects of black carbon (BC) aerosol radiative forcing on spring rainfall in Southeast Asia are studied using numerical simulations with the NASA finite-volume General Circulation Model (fvGCM) forced with monthly varying three-dimensional aerosol distributions from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART).During the boreal spring, March–April–May (MAM), BC from local emissions accumulates over Southeast Asia. The BC aerosol layer, which extends from the surface to higher elevation above planetary boundary layer (PBL), absorbs solar radiation and heats the mid-troposphere through a semi-direct effect over regions of large aerosol optical thickness (AOT) and thereby significantly perturbs large-scale and meridional circulations. Results show that anomalous precipitation patterns and associated large-scale circulations induced by radiative forcing by BC aerosol can explain observed precipitation reductions, especially over Southeast Asia. Therefore, BC aerosol forcing may be one of the important factors affecting the spring rainfall trend over Southeast Asia.  相似文献   

6.
Daily PM2.5 and TSP and their chemical composition with two dust events (DS1: 9–10 March and DS2: 27–30 March) were simultaneously observed for the period of 9 March–23 April 2004 from a monitoring network over China. Five monitoring sites were performed along the transport pathway of Asian dust storm, located in Northwest, North, East, and Southeast regions of China. The dust and non-dust days exhibited different characteristics with respect to the composition and the meteorological conditions. In non-dust days, particulate pollution was found to be associated with the city economy, and it primarily consisted of the crustal, the secondary, and the carbonaceous material. In the dust episodes, significant increase in the particle concentration with a large part of the secondary components diluted by the crustal components was observed at all the sites. Particles were getting more and more acidic as the episodic dust progressed eastward. Dust particles were suggested to react with SO2/NOX/sulfate/nitrate based on the variations of SO42−/Ca2+ and NO3/Ca2+ along the transport pathway, and the formation mechanism of sulfate and nitrate was proved to be different. Positive matrix factorization analysis showed that the sources from the upstream and the transport pathways could account for 49%, 82%, and 28% of PM mass, crust, and secondary aerosol, respectively, and the contribution decreased, as the dust made its way from source area to the coastal regions. Enrichment factors of the species presented significant correlations among different sites in the dust episodes, suggesting the significant impact of those dust emissions on the local environment.  相似文献   

7.
TSP and PM2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, F?, Cl?, NO3?, and SO42?). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH4+, K+, F?, Cl?, NO3?, and SO42? were more abundant in PM2.5 than TSP but the opposite was true for Mg2+ and Ca2+. PM collected on hazy days was enriched with secondary species (NH4+, NO3?, and SO42) while PM from straw combustion showed high K+ and Cl?. Firework displays caused increases in K+ and also enrichments of NO3? relative to SO42?. During DSs, the concentrations of secondary aerosol components were low, but Ca2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO42?/K+, NO3?/SO42?, and Cl?/K+) proved effective as indicators for different pollution episodes.  相似文献   

8.
Aerosol organic nitrogen over the remote Atlantic Ocean   总被引:1,自引:0,他引:1  
Water soluble organic nitrogen (WSON) has been measured in aerosols collected on three research cruises on the Atlantic Ocean from approximately 55°N to 45°S. Results are interpreted using air mass back trajectories and results for other aerosol components. WSON concentrations range from <1 to ~40 (median 5.6) nmol m?3 with significant WSON concentrations in both fine (<1 μm) and coarse mode (>1 μm) aerosol. Concentrations of WSON were highest in samples containing Saharan dust, suggesting a locally significant source associated with soil dust. More generally WSON concentrations were highest in air which had recently crossed continental areas. In the whole data set, WSON is well correlated to total soluble nitrogen and represents approximately 25% of total nitrogen. This correlation implies a significant anthropogenic contribution to the organic nitrogen.  相似文献   

9.
Aerosol indirect effect (AIE) was estimated over six Indian regions, which have been identified as main source regions of absorbing aerosol emissions, for four successive contrasting monsoon years, 2001 (normal monsoon rainfall year), 2002 (drought year), 2003 (excess monsoon rainfall year) and 2004 (below normal rainfall year). The AIE has been estimated both for fixed cloud liquid water path (CLWP) and for fixed cloud ice path (CIP) bins, ranging from 1 to 350 gm?2 at 25 gm?2 intervals obtained from Moderate resolution imaging spectroradiometer (MODIS). In 2002 and 2004, AIE found to be of positive (Twomey effect) in majority of the fixed CLWP and CIP bins, while in 2001 and 2003 majority of the bins were found to be showing negative indirect effect (Anti-Twomey effect). Changes in circulation patterns during contrasting monsoon seasons, bringing up air mass containing aerosols of different source origins may be the main reason for this positive and negative AIE. The study suggests that AIE could be one of the factors in modulating Indian summer monsoon. However, further research on this topic is to be carried out to establish the relationship between AIE and Indian monsoon rainfall and also AIE values may be parameterized in climate models for better prediction of monsoon.  相似文献   

10.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

11.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

12.
Between 18 March and 27 October 2002, 220 air samples were collected on 209 of 224 calendar days, on top of a coastal atmospheric research tower in Erdemli, Turkey. The volume of air filtered for each sample was 340 liters. Two hundred fifty-seven bacterial and 2598 fungal colony forming units (CFU) were enumerated from the samples using a low-nutrient agar. Ground-based dust measurements demonstrated that the region is routinely impacted by dust generated regionally and from North Africa and that the highest combined percent recovery of total CFU and African dust deposition occurred in the month of April (93.4% of CFU recovery and 91.1% of dust deposition occurred during African dust days versus no African dust present, for that month). A statistically significant correlation was observed (peak regional African dust months of March, April and May; rs=0.576, P=0.000) between an increase in the prevalence of microorganisms recovered from atmospheric samples on dust days (regional and African as determined by ground-based dust measurements), versus that observed on non-dust days. Given the prevalence of atmospherically suspended desert dust and microorganisms observed in this study, and that culture-based studies typically only recover a small fraction (<1.0%) of the actual microbial population in any given environment, dust-borne microorganisms and other associated constituents (organic detritus, toxins, etc.) may play a significant role in the regional human and ecosystem health.  相似文献   

13.
Environmental Science and Pollution Research - Dust storms affect the primary productivity of the ocean by providing necessary micronutrients to the surface layer. One such dust storm during March...  相似文献   

14.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

15.
The characteristics of Aerosol Optical Depth (AOD) and Angstrom exponent were analyzed and compared using Cimel sunphotometer data from 2007 to 2008 at five sites located in the Yangtze River Delta region of China. The simultaneous measurements between Lin’an and ZFU showed a very high consistency of AOD at all wavelengths. The differences are less than 0.02 for Angstrom exponent and AOD at all wavelengths. The mean values of AOD at 440 nm at the Pudong, Taihu and Lin’an were about 0.74 ± 0.43, 0.85 ± 0.46, and 0.89 ± 0.46, respectively. The mean values of Angstrom exponents were about 1.27 ± 0.30, 1.20 ± 0.28 and 1.32 ± 0.35, respectively. The variation of monthly averaged AOD over Pudong showed a single peak distribution, with the maximum value occurring in July (AOD440nm 1.26 ± 0.61) and minimum in January (AOD440nm 0.50 ± 0.27). However, the variations of monthly averaged AOD at Taihu and Lin’an showed a bi-modal distribution. There were peak values of AOD occurring in July (AOD440nm 1.41 ± 0.49) and September (AOD440nm 1.22 ± 0.52) for Taihu. For Lin’an, the two peak values of AOD occurred in June (AOD440nm 1.17 ± 0.69) and September (AOD440nm 1.28 ± 0.46). The AOD accumulated mainly between 0.30–0.90(68%), 0.30–1.20(75%) and 0.30–1.20 (~75%) at Pudong, Taihu, and Lin’an, respectively. The Angstrom exponent accumulated mainly between 1.10–1.60 (75%), 1.10–1.50 (63%) and 1.20–1.60, 50% (50%) at Pudong, Taihu, and Lin’an, respectively.The synchronized observation showed that the AOD at Pudong was larger than those at Dongtan by 0.03, 0.03, 0.04, 0.07, and 0.08 at wavelengths of 1020 nm, 870 nm, 670 nm, 500 nm and 440 nm, respectively. The synchronized observations at Pudong, Taihu and Lin’an showed that the three stations had high level AOD with means at 440 nm about 0.68, 0.73, and 0.78, respectively. The relationship between MODIS retrieved and ground-based measured AOD shows good agreement with R2 ranging from 0.68 to 0.79 at Pudong, Taihu, Lin’an and Dongtan. The MODIS results were overestimated comparing the ground measurements at Pudong, Taihu, and Dongtan but exceptional at Lin’an.The analysis results between aerosol optical properties and wind measurement at Pudong showed that the wind speed from the east correlates with the lower observed AOD. The back trajectory analysis indicates that more than 50% airmasses were from the marine area at Pudong, while back trajectories distribution is relatively homogeneous at Lin’an.  相似文献   

16.
High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 μg m−3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS yr−1, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models.  相似文献   

17.
Aerosol water content was determined from relative humidity controlled optical particle counter (ASASP-X) size distribution measurements made during the Southeastern Aerosol and Visibility Study (SEAVS) in the Great Smoky Mountains National Park during summer 1995. Since the scattering response function of the ASASP-X is sensitive to particle refractive index, a technique for calibrating the ASASP-X for any real refractive index was developed. A new iterative process was employed to calculate water mass concentration and wet refractive index as functions of relative humidity. Experimental water mass concentrations were compared to theoretically predicted values assuming only ammonium sulfate compounds were hygroscopic. These comparisons agreed within experimental uncertainty. Estimates of particle hygroscopicity using a rural aerosol model of refractive index as a function of relative humidity demonstrated no significant differences from those made with daily varying refractive index estimates. Although aerosol size parameters were affected by the assumed chemical composition, forming ratios of these parameters nearly canceled these effects.  相似文献   

18.
About 42 Asian-dust storms influenced the mainland and China during 2000–2002. Based on the Micaps meteorology data provided by China Meteorological Administration, the basic characteristics, including the source, movement route and influenced areas were studied for each case. It was shown that about 70% Asian-dust storms that influence China came from Mongolia, and were strengthened during the way from west to east. In 2000–2002, there was about 63.9% Asian-dust weather that might have affected China seas through three different routes. The probability is affecting the Bohai Sea was 27.4%, the Yellow Sea 30.9%, the East China Sea 12.3%, the Korea Channel 20.2% and the Japan Sea 9.2%. Annual dry deposition flux to the Yellow Sea was about 0.13 g m−2 d−1, and in spring was ∼0.20 g m−2 d−1. The total amount of dry deposition to the Yellow Sea was ∼17.9 Tg yr−1.  相似文献   

19.
Every year, during the pre-monsoon period (March–May), a pronounced increase in aerosol optical depth (AOD) is observed over the eastern Arabian Sea, which is attributed to the transport of continental aerosols. This paper presents the altitude distribution of tropospheric aerosols, characteristics of elevated aerosol layers and aerosol radiative heating of the atmosphere during the pre-monsoon season over Trivandrum (8.5°N, 77°E), a station located at the southwest coast of Indian peninsula which is covered by the eastern Arabian Sea plume. Altitude profiles of aerosol backscatter coefficient (βa) and linear depolarization ratio (LDR) reveal two distinct aerosol layers persisting between 0–2 km and 2–4 km. The layer at 2–4 km, which contributes about 25% of the AOD during polluted conditions, contains significant amount of non-spherical aerosols. This layer is prominent only when the advection of dry airmass occurs from the northern parts of the Indian subcontinent and northern Arabian Sea. Role of long-range transport in the development of this aerosol layer is further confirmed using latitude–altitude cross-section of βa observed by CALIPSO. Aerosol content in the layer below 2 km is large when advection of air occurs from the north and east Arabian Sea and is significantly small when it occurs from the southwest Arabian Sea or Indian Ocean. During the highly polluted conditions, aerosols tend to increase the diurnal mean atmospheric radiative heating rate by ~0.8 K day?1 at 500 m and 0.3 K day?1 at 3 km, which are about 80% and 30% of the respective radiative heating in the aerosol-free atmosphere.  相似文献   

20.
The aim of this work is to quantify the sensitivity of shortwave radiative fluxes to changes in the vertical distribution of aerosol absorption, taken into account through the aerosol Single Scattering Albedo (SSA). The case study represents a real atmospheric situation with a desert dust layer (DDL) in the mid troposphere over an urban Boundary Layer (BL) observed at Rome on 20 June 2007. A moderately high aerosol optical depth (AOD), 0.292 at 550 nm, and low Ångström exponent of 0.30 were measured. The observed case was reconstructed with a radiative transfer model, in which the SSA of the boundary layer aerosols was varied from that of a highly absorbing aerosol type (urban) to a highly scattering one (clear marine). The SSA of the DDL is determined keeping fixed the measured SSA of the whole atmospheric column. The simulations show notable changes in the surface and top of the atmosphere (TOA) diffuse fluxes depending on the boundary layer aerosol properties. The aerosol radiative forcing (ARF) at the surface changes by 6–19 W m?2, depending on the solar zenith angle, when urban or clean marine particles are included in the boundary layer. The ARF differences observed at TOA are between 1 and 5 W m?2 when urban and clean marine aerosol types in the BL are respectively used, showing a smaller dependency on the solar zenith angle than at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号