首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The representativeness of point measurements in urban areas is limited due to the strong heterogeneity of the atmospheric flows in cities. To get information on air quality in the gaps between measurement points, and have a 3D field of pollutant concentration, Computational Fluid Dynamic (CFD) models can be used. However, unsteady simulations during time periods of the order of months, often required for regulatory purposes, are not possible for computational reasons. The main objective of this study is to develop a methodology to evaluate the air quality in a real urban area during large time periods by means of steady CFD simulations. One steady simulation for each inlet wind direction was performed and factors like the number of cars inside each street, the length of streets and the wind speed and direction were taken into account to compute the pollutant concentration. This approach is only valid in winter time when the pollutant concentrations are less affected by atmospheric chemistry. A model based on the steady-state Reynolds-Averaged Navier–Stokes equations (RANS) and standard k-? turbulence model was used to simulate a set of 16 different inlet wind directions over a real urban area (downtown Pamplona, Spain). The temporal series of NOx and PM10 and the spatial differences in pollutant concentration of NO2 and BTEX obtained were in agreement with experimental data. Inside urban canopy, an important influence of urban boundary layer dynamics on the pollutant concentration patterns was observed. Large concentration differences between different zones of the same square were found. This showed that concentration levels measured by an automatic monitoring station depend on its location in the street or square, and a modelling methodology like this is useful to complement the experimental information. On the other hand, this methodology can also be applied to evaluate abatement strategies by redistributing traffic emissions.  相似文献   

2.
The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community.The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions.The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.  相似文献   

3.
Background, aim, and scope  Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. Materials and methods  The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. Results  This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. Discussion  In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Conclusions  Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15–22%). Recommendations and perspectives  To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.  相似文献   

4.
A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.  相似文献   

5.
The main purpose of this research is to manage simultaneous measurement of velocity and concentration in large cross-sections by recording and processing images of cloud structures to provide more detailed information for e.g. validation of CFD simulations. Dispersion from an isolated stack in an Atmospheric Boundary Layer (ABL) was chosen as the test case and investigated both experimentally and numerically in a wind tunnel. Large Scale-Particle Image Velocimetry (LS-PIV), which records cloud structures instead of individual particles, was used to obtain the velocity field in a vertical plane. The concentration field was determined by two methods: Aspiration Probe (AP) measurements and Light Scattering Technique (LST). In the latter approach, the same set of images used in the LS-PIV was employed. The test case was also simulated using the CFD solver FLUENT 6.3. Comparison between AP measurements and CFD revealed that there is good agreement when using a turbulent Schmidt number of 0.4. For the LST measurements, a non-linear relation between concentration and light intensity was observed and a hyperbolic-based function is proposed as correction function. After applying this correction function, a close agreement between CFD and LST measurements is obtained.  相似文献   

6.
7.
A new approach is proposed to the numerical solution of one-dimensional convection–diffusion equations that arise in modelling atmospheric processes and air pollution modelling. The technique is based on upstream-type difference approximations for first-order derivatives and non-standard difference approximations for second-order derivatives of convection–diffusion equations. This approach leads to the significant qualitative improvements in the numerical solutions behaviour. The relative contribution of convection and diffusion is directly incorporated into the corresponding numerical scheme in such a way that large spatial grids can be taken without affecting solution stability. The method is compared with the contemporary computational schemes for solving problems with severe internal and boundary gradients and is shown to be stable and computationally efficient. The results of a numerical experiment are given.  相似文献   

8.
In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k? turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.  相似文献   

9.
Underlying levels of atmospheric pollutants, assumed to be governed by smoothing mechanisms due to atmospheric dispersion, can be estimated from global emissions source databases on greenhouse gases and ozone-depleting compounds. However, spatial data may be contaminated with noise or even missing or zero-valued at many locations. Therefore, a problem that arises is how to extract the underlying smooth levels. This paper sets out a structural spatial model that assumes data evolve across a global grid constrained by second-order smoothing restrictions. The frequency-domain approach is particularly suitable for global datasets, reduces the computational burden associated with two-dimensional models and avoids cumbersome zero-inflated skewed distributions. Confidence intervals of the underlying levels are also obtained. An application to the estimation of global levels of atmospheric pollutants from anthropogenic emissions illustrates the technique which may also be useful in the analysis of other environmental datasets of similar characteristics.  相似文献   

10.
This study presents a comparison between measured and modelled particle number concentrations (PNCs) in the 10–300 nm size range at different heights in a canyon. The PNCs were modelled using a simple modelling approach (modified Box model, including vertical variation), an Operational Street Pollution Model (OSPM) and Computational Fluid Dynamics (CFD) code FLUENT. All models disregarded any particle dynamics. CFD simulations have been carried out in a simplified geometry of the selected street canyon. Four different sizes of emission sources have been used in the CFD simulations to assess the effect of source size on mean PNC distributions in the street canyon. The measured PNCs were between a factor of two and three of those from the three models, suggesting that if the model inputs are chosen carefully, even a simplified approach can predict the PNCs as well as more complex models. CFD simulations showed that selection of the source size was critical to determine PNC distributions. A source size scaling the vehicle dimensions was found to better represent the measured PNC profiles in the lowest part of the canyon. The OSPM and Box model produced similar shapes of PNC profile across the entire height of the canyon, showing a well-mixed region up to first ≈2 m and then decreasing PNCs with increased height. The CFD profiles do correctly reproduce the increase from road level to a height of ≈2 m; however, they do not predict the measured PNC decrease higher in the canyon. The PNC differences were largest between idealised (CFD and Box) and operational (OSPM) models at upper sampling heights; these were attributed to weaker exchange of air between street and roof-above in the upper part of the canyon in the CFD calculations. Possible reasons for these discrepancies are given.  相似文献   

11.
When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile.For RANS simulations with the standard kε model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height.By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46–47, 145–153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.  相似文献   

12.
Based on the International Water Association's (London) Activated Sludge Model No. 2 (ASM2), biochemistry rate expressions for general heterotrophs and phosphorus-accumulating organisms (PAOs) were introduced to a previously developed, three-dimensional computational fluid dynamics (CFD) activated sludge model that characterized the mixing pattern within the outer channel of a full-scale, closed-loop bioreactor. Using acetate as the sole carbon and energy source, CFD simulations for general heterotrophs or PAOs individually agreed well with those of ASM2 for a chemostat with the same operating conditions. Competition between and selection of heterotrophs and PAOs was verified using conventional completely mixed and tanks-in-series models. Then, competition was studied in the CFD model. These results demonstrated that PAOs and heterotrophs can theoretically coexist in a single bioreactor when the oxygen input is appropriate to allow sufficient low-dissolved-oxygen zones to develop.  相似文献   

13.
We report on computational fluid dynamics (CFD) predictions of mixing time of a pollutant in an unventilated, mechanically mixed, isothermal room. The study aims to determine: (1) the adequacy of the standard Reynolds Averaged Navier Stokes two-equation (k−) turbulence model for predicting the mixing time under these conditions and (2) the extent to which the mixing time depends on the room airflow, rather than the source location within the room. The CFD simulations modeled the 12 mixing time experiments performed by Drescher et al. (Indoor Air 5 (1995) 204) using a point pulse release in an isothermal, sealed room mechanically mixed with variable power blowers. Predictions of mixing time were found in good agreement with experimental measurements, over an order of magnitude variation in blower power. Additional CFD simulations were performed to investigate the relation between pollutant mixing time and source location. Seventeen source locations and five blower configurations were investigated. Results clearly show large dependence of the mixing time on the room airflow, with some dependence on source location. We further explore dependence of mixing time on the velocity and turbulence intensity at the source location. Implications for positioning air-toxic sensors in rooms are briefly discussed.  相似文献   

14.
A computational fluid dynamics (CFD) methodology for simulating the combustion process has been validated with experimental results. Three different types of experimental setups were used to validate the CFD model. These setups include an industrial-scale flare setups and two lab-scale flames. The CFD study also involved three different fuels: C3H6/CH4/Air/N2, C2H4/O2/Ar, and CH4/Air. In the first setup, flare efficiency data from the Texas Commission on Environmental Quality (TCEQ) 2010 field tests were used to validate the CFD model. In the second setup, a McKenna burner with flat flames was simulated. Temperature and mass fractions of important species were compared with the experimental data. Finally, results of an experimental study done at Sandia National Laboratories to generate a lifted jet flame were used for the purpose of validation. The reduced 50 species mechanism, LU 1.1, the realizable k-? turbulence model, and the EDC turbulence–chemistry interaction model were used for this work. Flare efficiency, axial profiles of temperature, and mass fractions of various intermediate species obtained in the simulation were compared with experimental data and a good agreement between the profiles was clearly observed. In particular, the simulation match with the TCEQ 2010 flare tests has been significantly improved (within 5% of the data) compared to the results reported by Singh et al. in 2012. Validation of the speciated flat flame data supports the view that flares can be a primary source of formaldehyde emission.
ImplicationsValidated computational fluid dynamics (CFD) models can be a useful tool to predict destruction and removal efficiency (DRE) and combustion efficiency (CE) under steam/air assist conditions in the face of many other flare operating variables such as fuel composition, exit jet velocity, and crosswind. Augmented with rigorous combustion chemistry, CFD is also a powerful tool to predict flare emissions such as formaldehyde. In fact, this study implicates flares emissions as a primary source of formaldehyde emissions. The rigorous CFD simulations, together with available controlled flare test data, can be fitted into simple response surface models for quick engineering use.  相似文献   

15.
The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures.

Implications: This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.  相似文献   


16.
An approach to solving the advection dominated atmospheric mass transport problem which adaptively constructs and updates the computational mesh is implemented and analyzed. The formulation of the mesh adaptation algorithm allows for information from other model processes as well as transport to influence mesh refinement. Comparisons to other methods are limited to a pure advection test problem. The scheme is based on a Petrov–Galerkin finite element method using quadratic interpolating polynomials over triangular elements. The temporal component of the transport equation is discretized using the Crank–Nicolson method. A single time step is applied to the entire domain regardless of mesh refinement levels. Two means of upwind biasing the solution via modification of the finite element weighting functions are investigated. Criteria for refining and unrefining the mesh based on advective flux and an estimate of the error are proposed and compared. The effects of varying the number of time steps taken between mesh refinements are analyzed. Results for adapted mesh solutions of a test problem are shown to be superior to corresponding uniform mesh finite element solutions. Comparisons to several other popular uniform mesh advection schemes indicate either equal or improved accuracy for the adapted mesh solutions.  相似文献   

17.
This paper presents a comprehensive atmospheric global and regional mercury model and its capability in describing the atmospheric cycling of mercury. This is an on-line model (integrated within the Canadian operational environmental forecasting and data assimilation system) which can be used to understand the role of meteorology in mercury cycling (atmospheric pathways), the inter-annual variability of mercury and can be evaluated against observations on global scales. This is due to the fact that the model uses a combination of actual observed and predicted meteorological state of the atmosphere at high resolution to integrate the model as opposed to the climatological approach used in existing global mercury models. The model was integrated and evaluated on global scale using only anthropogenic emissions. North to south gradients in mercury concentrations, seasonal variability, dry and wet deposition and vertical structure are well simulated by the model. The model was used to explain the observed seasonal variations in atmospheric mercury circulation. The results from this study include a global animation of surface air concentrations of total gaseous mercury for 1997.  相似文献   

18.
Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL.

Implications: Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.  相似文献   


19.
Experimentation in large irradiation chambers has been useful in providing insight into the chemistry of the photochemical smog formation problem. Initial efforts to reproduce the atmospheric phenomena artificially at controllable scale were successful in that gross atmospheric smog symptoms were observed in irradiation chambers. However, as the experimentation and evidence produced were becoming more elaborate, the question arose as to how much one could rely on chemical data in understanding and interpreting atmsopheric phenomena. The question becomes highly pertinent in view of the difference in concentration levels between atmosphere and chamber work. This issue was discussed during recent American Chemical Society meetings,4,8 and the conclusions from presentations and discussions were as follows: (1 ) There is qualitative agreement between chamber data and atmospheric data wherever comparison is feasible. (2) There is need for more precise chamber work at concentration levels more nearly equal to those in the atmosphere. Experimentation in chambers under typical atmospheric conditions presents some special problems associated with the chamber design and chemical analysis. Chamber methodology has been the focus of considerable research effort, and it appears to be an important factor affecting further progress in air pollution research. This paper describes methods and techniques used at the Bartlesville Petroleum Research Center.  相似文献   

20.
The behavioral distribution of the atmospheric turbulence flow over the terrain with changes in a rough surface has become one of the most important topics of air pollution research, among such other topics as transportation and dispersion pollutants. In this study, a computational model on atmospheric turbulence flow over a terrain hill shaped with rough surface was investigated under neutral atmospheric conditions. The flow was assumed to be 2D and modeled using computational fluid dynamics (CFD) models, which were numerically solved using Reynolds-averaged Navier-Stokes equations. Rough surface conditions were modeled using a number of windbreak fences regularly spaced on the hill. The mean velocity and turbulent structures such as turbulence intensity and turbulent kinetic energy were investigated in the upwind and downwind regions over the hill, and the numerical models were validated against the wind-tunnel results to optimize the turbulence model. The computational results agreed well with the results obtained from the wind tunnel experiments. The computational results indicate that the mean velocity was observed to increase dramatically around the crest of the upwind slope of the hill. A thick internal boundary layer was observed with a fence on the crest and downwind region of the hill. The reversed flow and recirculation zone were formed in the wake region behind the hill. It was thus determined that turbulent kinetic energy decreases as the mean velocity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号