首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosol samples were collected from 2002 to 2003 in Terceira, one of the islands of the Azores archipelago in the north-eastern Atlantic. The atmospheric samples have been analysed for its carbonaceous content and for lipid class compounds. The major constituents that comprise plant wax are n-alkanes (C23–C33, with and odd-to-even carbon predominance and carbon maxima at 29 or 31), n-alkanols (C22–C30, even-to-odd) and n-alkanoic acids (C22–C30, even-to-odd), with minor amounts of n-alkanals and polycyclic biomarkers, such as phytosterols. Some alkanedioic acids and phthalates were also detected. The occurrence of short-chain homologues may indicate an additional marine source, probably introduced into the atmosphere via sea spray. Changes in the composition of the homologous series derived from terrestrial plants throughout the observation period may be related to alterations in the regional sources and transport pathways. These terrestrial lipids contributed up to 47% of the total compound mass, while the marine input was estimated to be inferior to 19%, both of them being more representative in summer. Biomass burning sources represented approximately 1% of the total inputs to the organic aerosol for the most part of the year, excepting during the spring, when it contributed to 10%. Petroleum products and plasticizers presented higher contributions (up to 19%) during the winter months. Secondary constituents resulting from oxidation during transport varied from 14% to 37% of the apportioned organic mass. The fraction derived from soil resuspension accounted for 2–16%.  相似文献   

2.
Respirable suspended particles high-volume samples were collected from a coastal-rural site in the centre of Portugal in August 1997 and their solvent-extractable organic compounds were subjected to characterisation by gas chromatography-mass spectrometry. Particles were also analysed by a thermal/optical technique in order to determine their black and organic carbon content. The total lipid extract yields ranged from 20 to 63 μg m−3, containing mainly aliphatic hydrocarbons such as n-alkanes, acids, alcohols, aldehydes, ketones and polycyclic aromatic hydrocarbons. The higher input of vascular plant wax components was demonstrated by the distribution patterns of the n-alkanes, n-alkanoic acids and n-alkanols homologous series, with Cmax at C29, C22/C24 and C30, respectively. The CPI values for these series were in the range 1.8–9.7, being indicative of recent biogenic input from microbial lipid residues and flora epicuticular components. Specific natural constituents (e.g. phytosterols, terpenes, etc.) were identified as molecular markers. Some oxidation products from volatile organic precursors were also present in the aerosols. In addition, all samples had a component of petroleum hydrocarbons representing urban and vehicular emissions probably transported from the nearest cities and from the motorway in the vicinity. This data set could be used to make a mass balance with organic carbon, organic extracts and elutable matter, permitting also the comparison with lipid signatures observed for other regions.  相似文献   

3.
A series of source tests was performed to evaluate the chemical composition of particle emissions from the woodstove combustion of four prevalent Portuguese species of woods: Pinus pinaster (maritime pine), Eucalyptus globulus (eucalyptus), Quercus suber (cork oak) and Acacia longifolia (golden wattle). Analyses included water-soluble ions, metals, radionuclides, organic and elemental carbon (OC and EC), humic-like substances (HULIS), cellulose and approximately l80 organic compounds. Particle (PM10) emission factors from eucalyptus and oak were higher than those from pine and acacia. The carbonaceous matter represented 44–63% of the particulate mass emitted during the combustion process, regardless of species burned. The major organic components of smoke particles, for all the wood species studied, with the exception of the golden wattle (0.07–1.9% w/w), were anhydrosugars (0.2–17% w/w). Conflicting with what was expected, only small amounts of cellulose were found in wood smoke. As for HULIS, average particle mass concentrations ranged from 1.5% to 3.0%. The golden wattle wood smoke presented much higher concentrations of ions and metal species than the emissions from the other wood types. The results of the analysis of radionuclides revealed that the 226Ra was the naturally occurring radionuclide more enriched in PM10. The chromatographically resolved organics included n-alkanes, n-alkenes, PAH, oxygenated PAH, n-alkanals, ketones, n-alkanols, terpenoids, triterpenoids, phenolic compounds, phytosterols, alcohols, n-alkanoic acids, n-di-acids, unsaturated acids and alkyl ester acids.  相似文献   

4.
The large-scale air pollution episode due to the out-of-control biomass burning for agricultural purposes in Indonesia started in June 1997, has become a severe environmental problem for itself and the neighboring countries. The fire lasted for almost five months. Its impact on the health and ecology in the affected areas is expected to be substantial, costly and possibly long lasting. Air pollution Index as high as 839 has been reported in Malaysia. API is calculated based on the five pollutants: NO2, SO2, O3, CO, and respirable suspended particulates (PM10). It ranges in value from 0 to 500. An index above 101 is considered to be unhealthy and a value over 201 is very unhealthy (Abidin and Shin, 1996).The solvent-extractable organic compounds from four total suspended particulate (TSP) high-volume samples collected in Kuala Lumpur, Malaysia (Stations Pudu and SIRIM) were subjected to characterization – the abundance was determined and biomarkers were identified. Two of the samples were from early September when the fire was less intense, while the other two were from late September when Kuala Lumpur experienced very heavy smoke coverage which could be easily observed from NOAA/AVHRR satellite images. The samples contained mainly aliphatic hydrocarbons such as n-alkanes and triterpanes, alkanoic acids, alkanols, and polycyclic aromatic hydrocarbons. The difference between the early and late September samples was very significant. The total yield increased from 0.6 to 24.3 μg m-3 at Pudu and 1.9 to 20.1 μg m-3 at SIRIM, with increases in concentration in every class. The higher input of vascular plant wax components in the late September samples, when the fire was more intense, was characterized by the distribution patterns of the homologous series n-alkanes, n-alkanoic acids, and n-alkanols, e.g., lower U : R, higher >C22/<C20 for n-alkanoic acids, higher >C20/<C20 for n-alkanols, a shift in Cmax from C16 to C26 for n-alkanoic acids and C18 to C28 for n-alkanols, and the presence of abundant moretane (17β(H), 21α(H)-hopanes). The biomarkers dehydroabietic acid and retene were not found in the samples suggesting there is a difference in the long-distance transport samples of an Asian forest fire and the controlled experiments reported in the literature. Similar to the biomass burning in Amazonia (Abas et al., 1995), the present study also showed an absence of conifer tracers in the smoke aerosols indicating tropical wood sources. Abundant friedelin, a specific biomarker for smoke from oak wood fires (Standley and Simoneit, 1990), was present in the late September samples when the fire was more intense. The results were compared to literature values from an earlier study of the haze episode on 29 September 1991 in Kuala Lumpur, Malaysia (Abas and Simoneit, 1996).  相似文献   

5.
Ambient concentrations of n-alkanes with carbon number ranging from 17 to 36 were determined for PM2.5 samples collected in Taipei city during September 1997–February 1998. The measured concentrations of particulate n-alkanes were in the range of 69–702 ng m−3, considerably higher than the concentration levels observed in Los Angeles and Hong Kong. The concentration distributions of n-alkanes homologues obtained in this study exhibited peaks at C19, C24 or C25. This suggests that fossil fuel utilization, such as vehicular exhaust and lubricant residues, was an important contributor to the Taipei aerosol. Source apportionment of PM2.5 was conducted using carbon preference index (CPI, defined as the ratio of the total concentration of particulate n-alkanes with odd carbon number to that with even carbon number) and U : R ratio (the concentration ratio of unresolved components to resolved components obtained from chromatograms). The low CPI value (0.9–1.9) and high U : R ratio (2.6–6.4) for each sample further confirmed that fossil fuel utilization was the major source of n-alkanes in ambient PM2.5 of Taipei city. Estimates from these results showed that 69–93% of the n-alkanes in PM2.5 of the Taipei aerosol originated from vehicular exhaust. The higher concentration level of particulate n-alkanes in the Taipei aerosol was mainly a result of vehicular emissions.  相似文献   

6.
In this study, the seasonal variation of different types of particulates was investigated in a fixed roadside station in heavily trafficked urban area of Hong Kong. Aerosol samples for total suspended particles (TSP), PM10 and PM2.5 were collected from June 1998 to May 1999 at a roadside site. Meteorological conditions such as relative humidity (RH), rainfall and prevailing wind direction were found to affect the mass concentration of TSP, PM10 and coarse particulates at roadside level. Large size particles had an apparent seasonal variation, with higher concentration level in winter and lower in summer. The dry continental winter monsoon and the wet oceanic summer monsoon are the dominating factors. On the other hand, annual variation of PM2.5 is relatively insignificant, suggesting that they are mainly from local traffic emission. PM10 accounted for 62% of the TSP, while PM2.5 accounted for 46%. The annual PM2.5/PM10 is high with PM2.5 responsible for 74% of PM10. In our heavily trafficked roadside fixed site, TSP exceeded the annual average of the Hong Kong Air Quality Objective by a factor of 1.53 while PM10 exceeded by 1.39. The annual average concentration of PM2.5 exceeded the National Ambient Air Quality Standard (NAAQS) annual average of 15 μg m−3 by a factor of 3.8 and is a cause of concern. A total of the 24 h average PM2.5 exceeded NAAQS by 33%. According to our data reported, fine particulate pollution is serious in Hong Kong.  相似文献   

7.
n-Alkanes were present in the northern Wisconsin atmosphere in both the particulate and vapor state. Partitioning was operationally defined by a high-volume sampling methodology which used a glass fiber filter to separate particles and vapor. Concentrations, distributions and vapor/particle partitioning were seasonally dependent. Total n-alkane (C11-C32) concentrations in the vapor phase ranged from 25 to 75 ng m−3. Vapor concentrations of n-alkanes within the range C11-C17 were greatest during winter. Total n-alkane (C11-C32) concentrations in the particulate phase varied from 5.1 to 35 ng m−3 while those of the odd-numbered n-alkanes within the range C25-C31 ranged from 3.1 to 31 ng m−3. Highest concentrations of these n-alkanes were observed during spring and early summer. The CPI (20–32) of particulate n-alkanes was highest during spring (13.0) and early fall (8.0). The highest total n-alkane concentration and CPI (20–32) occurred in spring during a period of pine pollen disposal. A high-boiling unresolved complex mixture (UCM) was prominent in particles collected during winter, while a low-boiling UCM was typical of vapor collected during summer.  相似文献   

8.
The 24-h average coarse (PM10) and fine (PM2.5) fraction of airborne particulate matter (PM) samples were collected for winter, summer and monsoon seasons during November 2008-April 2009 at an busy roadside in Chennai city, India. Results showed that the 24-h average ambient PM10 and PM2.5 concentrations were significantly higher in winter and monsoon seasons than in summer season. The 24-h average PM10 concentration of weekdays was significantly higher (12-30%) than weekends of winter and monsoon seasons. On weekends, the PM2.5 concentration was found to slightly higher (4-15%) in monsoon and summer seasons. The chemical composition of PM10 and PM2.5 masses showed a high concentration in winter followed by monsoon and summer seasons.The U.S.EPA-PMF (positive matrix factorization) version 3 was applied to identify the source contribution of ambient PM10 and PM2.5 concentrations at the study area. Results indicated that marine aerosol (40.4% in PM10 and 21.5% in PM2.5) and secondary PM (22.9% in PM10 and 42.1% in PM2.5) were found to be the major source contributors at the study site followed by the motor vehicles (16% in PM10 and 6% in PM2.5), biomass burning (0.7% in PM10 and 14% in PM2.5), tire and brake wear (4.1% in PM10 and 5.4% in PM2.5), soil (3.4% in PM10 and 4.3% in PM2.5) and other sources (12.7% in PM10 and 6.8% in PM2.5).  相似文献   

9.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

10.
Organic carbon (OC), elemental carbon (EC), and 90 organic compounds (36 polycyclic aromatic hydrocarbons [PAHs], 25 n-alkane homologues, 17 hopanes, and 12 steranes) were concurrently quantified in atmospheric particulate matter of PM2.5 and PM10. The 24-hr PM samples were collected using Harvard Impactors at a suburban site in Doha, Qatar, from May to December 2015. The mass concentrations (mean ± standard deviation) of PM2.5 and PM10 were 40 ± 15 and 145 ± 70 µg m?3, respectively, exceeding the World Health Organization (WHO) air quality guidelines. Coarse particles comprised 70% of PM10. Total carbonaceous contents accounted for 14% of PM2.5 and 10% of PM10 particulate mass. The major fraction (90%) of EC was associated with the PM2.5. In contrast, 70% of OC content was found in the PM2.5–10 fraction. The secondary OC accounted for 60–68% of the total OC in both PM fractions, indicating photochemical conversions of organics are much active in the area due to higher air temperatures and solar radiations. Among the studied compounds, n-alkanes were the most abundant group, followed by PAHs, hopanes, and steranes. n-Alkanes from C25 to C35 prevailed with a predominance of odd carbon numbered congeners (C27–C31). High-molecular-weight PAHs (5–6 rings) also prevailed, within their class, with benzo[b + j]fluoranthene (Bb + jF) being the dominant member. PAHs were mainly (80%) associated with the PM2.5 fraction. Local vehicular and fugitive emissions were predominant during low-speed southeasterly winds from urban areas, while remote petrogenic/biogenic emissions were particularly significant under prevailing northwesterly wind conditions.

Implications: An unprecedented study in Qatar established concentration profiles of EC, OC, and 90 organic compounds in PM2.5 and PM10. Multiple tracer organic compounds for each source can be used for convincing source apportionment. Particle concentrations exceeded WHO air quality guidelines for 82–96% of the time, revealing a severe problem of atmospheric PM in Doha. Dominance of EC and PAHs in fine particles signifies contributions from combustion sources. Dependence of pollutants concentrations on wind speed and direction suggests their significant temporal and spatial variability, indicating opportunities for improving the air quality by identifying sources of airborne contaminants.  相似文献   


11.
The bilinear receptor model positive matrix factorization (PMF) was used to apportion particulate matter with an aerodynamic diameter of 1–10 μm (PM1–10) sources in a village, B?ezno, situated in an industrial region of northern Bohemia in Central Europe. The receptor model analyzed the data sets of 90- and 60-min integrations of PM1–10 mass concentrations and elemental composition for 27 elements. The 14-day sampling campaigns were conducted in the village in summer 2008 and winter 2010. Also, to ensure seasonal and regional representativeness of the data sets recorded in the village, the spatial-temporal variability of the 24-hr PM10 and PM1–10 within 2008–2010 in winter and summer across the multiple sites was evaluated. There were statistically significant interseasonal differences of the 24-hr PM data, but not intrasummer or intrawinter differences of the 24-hr PM1–10 data across the multiple sites. PMF resolved seven sources of PM1–10. They were high-temperature coal combustion; combustion in local heating boilers; marine aerosol; mineral dust; primary biological/wood burning; road dust, car brakes; and gypsum. The main summer factors were assigned to mineral dust (38.2%) and primary biological/wood burning (33.1%). In winter, combustion factors dominated (80%) contribution to PM1–10. The conditional probability function (CPF) helped to identified local sources of PM1–10. The source of marine aerosol from the North Sea and English Channel was indicated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT).

Implications: This is the first application of PMF to highly time/size resolved PM data in Czech Republic. The coarse aerosol fraction, PM1–10, was chosen with regard to industrial character of the region, sampling site near the coal strip mine and coal power stations. Contrary to expectation, source apportionment did not show dominance of emissions from the coal strip mine. The results will enable local authorities and state bodies responsible for air quality assessment to focus on sources most responsible for air pollution in this industrial region.

Supplemental Materials:?Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of measurement campaigns; (2) CPF for each of the sources contributing to PM1–10; (3) factors contribution to PM1–10 resolved by PMF; (4) diurnal pattern of road dust, car brake factor in summer and winter; (5) trajectories during the marine aerosol episode in winter 2010; and (6) temporal temperature, concentration, and wind speed relationships during the summer 2008 campaign and winter 2010 campaign.  相似文献   

12.
The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM2.5 samples was collected from a commercial restaurant and determined by gas chromatography–mass spectrometry (GC–MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.  相似文献   

13.
Abstract

A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions [PMCAMx]) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9–11%), nitrate (45–58%), and ammonium (7–11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8–17%), nitrate decreases (18– 42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5–10% reduction of PM2.5 because of reductions in nitrate (4–19%), ammonium (4–10%), organic PM (12–14%), and small reductions in sulfate. Although sulfur dioxide (SO2) reduction is the single most effective approach for sulfate control, the coupled decrease of SO2 and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO2 reduction alone.  相似文献   

14.
The water-soluble ions in fine (PM<2.5) and coarse (PM2.5−10) atmospheric aerosols collected in Christchurch during winter 2001, spring 2000 and summer 2001, and in Auckland during winter 2001 have been studied in terms of coarse–fine and day–night differences. Although the chemical characteristics of the coarse particles were similar in both cities, those of the fine particles collected in the Christchurch winter were significantly different, as manifested by higher concentrations of nss-K+, nss-Cl, nss-Ca2+, nss-SO42−, NO3 and NH4+. It was found that nighttime PM10 and nss-K+ concentrations were much higher than their daytime concentrations in the Christchurch winter but a clear day–night difference was not apparent in the Auckland winter. Moreover, in the winter, sea-salt ions did not show a day–night difference; however, nss-SO42− had opposite day–night variation in the two cities. An ion balance calculation has shown that in most samples, coarse particles can be neutral or alkaline, however, fine particles can be neutral or acidic. The possibility of ammonium salts existing in the fine particles collected in the Christchurch winter is discussed and it is concluded that a variety of ammonium salts were present. Equivalent ratios suggest that the fine particles may be significantly aged in the Christchurch winter.The evidence from our soluble ion study strongly suggests that wood and coal burning and secondary aerosols make a significant contribution to fine particulate mass in the Christchurch atmosphere. Thus, home-heating, a sheltered geographic location and relatively calm atmospheric condition are thought to be the major causes for the serious atmospheric particulate pollution in the Christchurch winter.  相似文献   

15.
Religious festivals (festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July–August 2005 when 59 feasts were celebrated and September–October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM10 and metal concentration levels measured as weekly means were significantly higher during July–August compared to September–October and there exist strong correlations between PM10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July–August were at comparable or higher concentration than recently reported values in PM10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health.  相似文献   

16.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

17.
The objective of this study was to describe the ambient levels of particulate matter (PM) and its influence to air quality situation on the dry Mediterranean island of Cyprus. From October 2002 to August 2003 PM10 and PM2.5 samples were collected at 31 different sampling sites in Cyprus. In addition, continuous measurements of PM10 were carried out from 2003 to 2007 at a traffic and a rural site. It can be recognised that at all traffic and at some residential and urban background sites, the actual EU limit values have been exceeded. Special events e.g. long-range transport of Sahara dust storms were recorded over urban as well as rural areas in the order of 6–8 events per year, with a major frequency in summer and spring periods. The comparison of the PM10 concentrations in Cyprus cities with values of other European cities demonstrates the PM10 problem in Cyprus, especially in the dry summer season, when no rain is cleaning the air and the dry surfaces. This underlines the necessity of PM abatement strategies.  相似文献   

18.
Ten rainwater and snow samples were collected from the Los Angeles area and its vicinity (semirural and rural areas) in S California. The samples were studied for various types of solvent-extractable organic compounds, including n-alkanes, UCM hydrocarbons, PAHs, FAs, benzoic acids and phenols. (See Table 1 for definition of acronyms.)In rural (mountain) snow samples, the major identifiable species are odd-carbon-numbered n-alkanesin the C17–C35 range and even-carbon-numbered FAs in the C12–C30 range, which are both of biogenic origin. On the other hand, Los Angeles urban rain samples contain abundant phenols, benzoic acids and UCM, which are considered to originate from incomplete combustion of fossil fuels mostly in automobile, as well as biogenic FAs. The results indicate that in urban areas, anthropogenic sources are the most important factor controlling the organic chemistry of rainwater, whereas biogenic sources are a minor contributor.Several indices are discussed for evaluating the anthropogenic/biogenic contribution to organic matter in wet deposition. The CPI of n-alkanes, UCM/n-alkanes ratio, phenols/C12–C30 FA ratio, benzoic acids/C12–C30 FA ratio, UCM/C12–C30FA ratio and PAH/C12–C30 FA ratio change drastically from rural to urban areas, indicating that they are useful indicators.  相似文献   

19.
At urban areas in south Europe atmospheric aerosol levels are frequently above legislation limits as a result of road traffic and favourable climatic conditions for photochemical formation and dust suspension. Strategies for urban particulate pollution control have to take into account specific regional characteristics and need correct information concerning the sources of the aerosol.With these objectives, the ionic and elemental composition of the fine (PM2.5) and coarse (PM2.5–10) aerosol was measured at two contrasting sites in the centre of the city of Oporto, roadside (R) and urban background (UB), during two campaigns, in winter and summer.Application of Spatial Variability Factors, in association with Principal Component/Multilinear Regression/Inter-site Mass Balance Analysis, to aerosol data permitted to identify and quantify 5 main groups of sources, namely direct car emissions, industry, photochemical production, dust suspension and sea salt transport. Traffic strongly influenced PM mass and composition. Direct car emissions and road dust resuspension contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particles mass at both sites, showing typically highest loads at roadside. In fine particles secondary origin was also quite important in aerosol loading, principally during summer, with 28–48% mass contribution, at R and UB sites respectively. Sea spray has an important contribution of 18–28% to coarse aerosol mass in the studied area, with a highest relative contribution at UB site.Application of Spatial Variability/Mass Balance Analysis permitted the estimation of traffic contribution to soil dust in both size ranges, across sites and seasons, demonstrating that as much as 80% of present dust can result from road traffic resuspension.  相似文献   

20.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号