首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
GOAL, SCOPE AND BACKGROUND: In 1998, the International Council of Chemical Associations (ICCA) launched a global initiative to investigate more than 1,000 HPV chemicals (High Production Volume, > or = 1,000 t/a) within the refocused OECD HPV Chemicals Programme. Up to the OECD SIDS Initial Assessment Meeting in April 2004 (SIAM 18) 147 ICCA dossiers (ca. 230 CAS-No) have been assessed based on a harmonised data set. The environmental profile and an ecotoxicological characterisation of these chemicals are presented here. Data for acute aquatic toxicity were correlated among each other, as well as data for fish (LC50, LD50) and rodents (LD50). The data for acute aquatic toxicity are compared with other existing chemicals. METHODS: Data of the ICCA HPV chemicals from the OECD SIAM 11-18 are presented for: log Kow (as an indicator for bioaccumulation potential), biodegradation, acute aquatic toxicity and availability of long-term toxicity data. Correlation analysis was performed with log transformed data and a linear regression model was fitted to the data, if a significant correlation was found. Acute toxicity for fish and acute oral toxicity for rodents were correlated on a molar basis. Acute aquatic toxicity of the chemicals is compared with data from BUA reports 1-234 and a random EINECS sample (Knacker et al. 1995). RESULTS AND DISCUSSION: According to the dossier information, 71 of the 147 ICCA chemicals are not 'readily biodegradable', 21 have a log Kow > or = 3, and 44 are 'toxic' (LC/EC50 < or = 10 mg/L) or 'very toxic' (LC/EC50 < or = 1 mg/L) to aquatic organisms. For 77, only the base set (acute fish, Daphnia and algae) is available, for the rest at least one long-term test (fish or Daphnia) is available and three tests for a mere 14 others. Based on the data presented, the SIAM gives recommendations for Environment and Human Health. 22 chemicals have been identified as a 'candidate for further work' for Environment and 16 for Human Health. The highest correlation coefficient was obtained correlating fish and Daphnia (r2 = 0.79). LC50 (fish) is significantly correlated with LD50 (rodent), but data are widely scattered. The correlation is not improved after transforming LC50 (fish) to LD50 (fish), using BCF QSAR. Based on acute aquatic toxicity, 25.1% of the chemicals from the BUA reports 1-234 are classified as 'very toxic' (LC/EC50 < or = 1 mg/L). This proportion is 2.5-fold higher than the ICCA HPV chemicals and 1.4-fold higher than the random EINECS sample. CONCLUSIONS: Correlation coefficients for aquatic toxicity data are rather uniform (0.57-0.79) compared with literature data, but also the best correlation was observed between fish and Daphnia. Because the scatter around the regression lines is still considerable, simple predictions of ecotoxicity between species are not possible. Correlation of LC50 (fish) and LD50 (rodent) indicates that toxicity is different. Surprisingly, the correlation of fish and rodent toxicity is not improved by transforming LC50 values to internal LD50s. The selection of ICCA chemicals by market significance (production volume) leads to a classification of toxicity, which is more comparable to a random sample of EINECS chemicals than to German BUA chemicals. The latter were chosen for concern (for Environment or Human Health). RECOMMENDATIONS AND OUTLOOK: Of 147 dossiers assessed between SIAM 11-18, ca. 75% were sponsored by the three following countries: Germany (42), USA (37) and Japan (33). The current output is about 50 dossiers per year (70-100 CAS-No), but a trend for an increase of output is noticeable. Industry, national authorities, and OECD work on a further development to speed up the output. The number of chemicals with 'low priority for further work' and the work recommended for the 'candidates' (mainly exposure assessment) indicate that the data presented were adequate for an initial hazard assessment according to OECD requirements. From the ICCA HPV list (n = 880, state of 1999) 44% of the chemicals have data available to cover all SIDS endpoints for Environment and only 33% for Human Health (Allanou et al. 1999). This indicates the importance of the Initiative to provide information on existing chemicals. The authors agree with the expectation "...that the scientific information provided by this global initiative will be considered as an internationally accepted and harmonised basis for further steps of chemicals management." (ICCA 2002 b).  相似文献   

2.
W.Brock Neely 《Chemosphere》1984,13(7):813-819
A theoretical relation has been established between the water solubility of an organic chemical and the ratio of the acute fish LC50 at two different time periods. The theory was tested by examining a data base of 24 chemicals. The finding of a positive correlation between the observed and calculated ratio of the 96 hr LC50 to the 24 hr LC50 helped to substantiate the theory.  相似文献   

3.
Abstract

Acute and subacute 2,4‐D toxicity to carp (Cyprinus carpio L.) were investigated. Acute toxicity (LC‐ 50) was investigated in semi‐static test during a 24, 48, and 96‐ hours exposition. Subacute toxicity was investigated by exposing fish to different 2,4,‐D concentrations (150, 200, and 250 mg/L) for 14 days. Biochemical and morphological changes in certain organs and tissues were investigated.

LC‐ 50 values at 24 hours exposure was 310.0 mg/L, 295.0 mg/L for 48 hours, and 270.0 mg/L for 96 hours exposure.

Subacute toxicity tests show that 2,4‐D induce changes in the enzyme activities (AP, GOT, GPT) and morphological changes in the gills, liver and kidneys, but changes are of limited biological importance.  相似文献   

4.
Gül A 《Chemosphere》2005,59(2):163-166
Chlorpyrifos-methyl, a wide-spectrum organophosphorus insecticide and potential toxic pollutant contaminating aquatic ecosystems, was investigated for acute toxicity. Larvae of the freshwater fish Nile tilapia (Oreochromis niloticus L.) were selected for the bioassay experiments. The experiments were repeated three times and the 96 h LC50 was determined for the larvae. The static test method for assessing acute toxicity was used. Water temperature was maintained at 25+/-1 degrees C. In addition, behavioral changes at each chlorpyrifos-methyl concentration were observed for the individual fish. Data obtained from the chlorpyrifos-methyl acute toxicity tests were evaluated using Finney's probit analysis statistical method. The 96 h LC50 value for Nile tilapia larvae was calculated to be 1.57 mg/l.  相似文献   

5.
GOAL, SCOPE AND BACKGROUND: Orimulsion (stable emulsion of natural bitumen and water) is a new imported industrial fuel in Lithuania. No data on its toxicity to fish is freely available. The aim of this study was to investigate sensitivity of rainbow trout (Oncorhynchus mykiss) to acute and chronic toxicity of orimulsion and to estimate the Maximum Acceptable Toxicant Concentration (MATC) of orimulsion to fish. METHODS: Laboratory tests were conducted on rainbow trout in all stages of development (embryos, larvae, adults). Acute toxicity (96-hour duration) and long-term (28 or 60-day duration) tests evaluating the wide range spectrum of biological indices were performed under semi-static conditions. RESULTS AND DISCUSSION: Median lethal concentration (96-hour LC50) values and their 95% confidence intervals derived from the tests were: 0.1 (0.09-0.12) to embryos, 0.06 (0.05-0.07) to larvae and 2.22 (2.02-2.43) to adult fish, and 28-day LC50 to adult fish was found to be 0.26 (0.21-0.32) g/l of total orimulsion respectively. The acute toxicity of orimulsion to rainbow trout can be characterised by a narrow zone of toxic effect and a sharp boundary between lethal and sublethal concentrations. The lowest 'safe' or 'no-effect' concentration values of total orimulsion obtained in long-term tests were equal to 0.09 g/l to adult fish, 0.019 g/l to embryos, and 0.0017 g/l to larvae. Proposed value of 'application factor' for orimulsion was found to be equal to 0.03. Since orimulsion has the property to disperse in all water volume, its toxic effect on fish can be characterised by the combined effects of dispersion and water-soluble-fraction. CONCLUSIONS: Maximum Acceptable Toxicant Concentration (MATC) of 0.0017 g/l of total orimulsion to fish was derived from long-term tests based on the most sensitive parameter of rainbow trout larvae (relative mass increase at the end of the test). According to substance toxicity classification accepted for Lithuanian inland waters, orimulsion can be referred to substances of 'moderate' toxicity to fish. RECOMMENDATIONS AND OUTLOOK: For prediction and evaluation of toxic impact of orimulsion accident spills on fish, some recommendations should be given. Since orimulsion has the property to disperse in all water volume during short time periods, the amounts of both spilled orimulsion and polluted water should be ascertained. Once both parameters are known, the real concentration of orimulsion in the water body must be determined. Then this concentration must be compared with 'safe' concentration to fish. By use of 'application factor' 0.03, approximate MATC for other fish species can be estimated when only acute toxicity data (96-hour LC50 value) is available.  相似文献   

6.
The acute toxicity of permethrin, resmethrin, and cypermethrin to four species of aquatic non-target invertebrate organisms, found in estuarine and freshwater ecosystems, was evaluated. Artemia franciscana and Brachionus plicatilis larvae, as estuarine organisms, and Brachionus calyciflorus and Thamnocephalus platyurus larvae, as freshwater organisms, were exposed for 24 h to concentrations of these pyrethroids, and the LC(50) values were compared. The freshwater organisms were more sensitive to these pyrethroids than estuarine organisms tested. A. franciscana larvae were more tolerant organisms than B. plicatilis larvae. The freshwater organisms tested have demonstrated to be a good alternative to the standard acute toxicity assays using Daphnia, although Brachionus plycatilis larvae were more sensitive to these pyrethroid insecticides than T. platyurus. Analysis of 24 h LC(50) values of these pyrethroids, determined by static bioassays, revealed that the rank order of toxicity was: permethrin相似文献   

7.
Abstract

Acute bioassay tests on the toxic effects of the insect larvicide Abate® (temephos) on the mouth brooder cichlid fish Tilapia melanopleum and the dragonfly larvae (Odonata) Neurocordulia virginiensis were conducted in static non renewal toxicity test set ups. The 96h‐LC50 (95% confidence intervals) was 30.2 (20.5‐ 44.20) mg/L for the fish and 2.0 (1.16–2.0) mg/L for the dragonfly larvae. The dragonfly larvae were 15 times more susceptible to the larvicide than the tilapia. The calculated NOEC (No Observable Effect Concentration) was 14.1 mg/L for the fishand less than 1.0 mg/L for the insect larvae. The estimated ‘safe’ concentration of the pesticide to the fish was 3.0 mg/L and 0.2 mg/L for insect larvae. These figures are far above the concentrations approved for use in the control of mosquito larvae(0.0004–0.01 mg/L). It appears that the application of toxic levels of the insecticide for the elimination of some aquatic invertebrates may be ‘safe’ for normal survival, growth and reproduction offish and some aquatic insect larvae.  相似文献   

8.
The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC(50) values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC(50) obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC(50)). This LC(50) value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC(50). For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC(50) and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC(50) of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC(50) values. In contrast, LC(50) determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies.  相似文献   

9.
This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26-1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07-2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.  相似文献   

10.
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L?1) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 11.8 (9.12–15.4) µg L?1, respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 (15.9–29.4) µg L?1, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 5.47 (3.77–7.94) µg L?1, respectively. The results of this study suggest that 1 µg L?1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.  相似文献   

11.
This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26–1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07–2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.  相似文献   

12.
13.
R Deml  K Dettner 《Chemosphere》2001,45(6-7):783-789
A herbicide containing 2,4-dichlorophenoxyacetic acid (2,4-D) and related chemicals was fed to caterpillars of Eupackardia calleta, and the fate of the substances in the larvae and during further ontogenesis was followed by combined gas chromatography/mass spectrometry. The compounds were found in differing amounts in larval midgut, faeces, fat body/haemolymph, and even in an exocrine secretion produced by integumental glands. Furthermore, they were detected in samples from the resulting adult moths, indicating an intraindividual transfer. Since the individual development of E. calleta was distinctly accelerated by 2,4-D, possible impacts of the herbicide on the life history of the animals in the field are discussed. Based on the chemical data, hypothetical metabolic pathways for 2,4-D in E calleta larvae are proposed.  相似文献   

14.
Goal, Scope and Background Chlorite (ClO2ˉ) is a primary decomposition product when chlorine dioxide (ClO2) is added during water treatment; therefore the toxic effects of both compounds on aquatic organisms are possible. Limited data are available concerning their toxicity to fish. The aim of this study was to investigate sensitivity of rainbow trout to acute and chronic toxicity of chlorine dioxide and chlorite, and to estimate the Maximum-Acceptable-Toxicant-Concentration (MATC) of those compounds in fish. Methods The acute and chronic toxicity of chlorine dioxide and chlorite to larval and adult rainbow trout was investigated in 96-hour to 20-day laboratory exposures evaluating the wide range spectrum of biological indices under semi-static conditions. Results and Discussion Median lethal concentration (96-hour LC50) values derived from the tests were: 2.2 mg/l for larvae; 8.3 mg/l for adult fish and 20-day LC50 for larvae was 1.6 mg/l of chlorine dioxide, respectively. Chlorite was found to be from 48 to 18 times less acutely toxic to larvae and adult fish, correspondingly. Both chemical compounds induced similar toxic effects in rainbow trout larvae during chronic tests (they affected cardio-respiratory and growth parameters), but chlorine dioxide had a higher toxic potency than chlorite. A significant decrease in the heart rate and respiration frequency of larvae was established. However, within an increase in exposure duration recovery of cardio-respiratory responses was seen to have occurred in larvae exposed to chlorite. Meanwhile, in larvae exposed to chlorine dioxide, a significant decrease in cardio-respiratory responses remained during all 20-day chronic bioassays. Chlorine dioxide also more strongly affected growth parameters of rainbow trout larvae at much lower test concentrations. Decreased rate of yolk-sack resorption occurred only in the tests with chlorine dioxide. Conclusions Maximum-Acceptable-Toxicant-Concentration (MATC) of 0.21 mg/l for chlorine dioxide and of 3.3 mg/l for chlorite to fish was derived from chronic tests based on the most sensitive parameter of rainbow trout larvae (growth rate). According to substance toxicity classification accepted for Lithuanian inland waters, chlorine dioxide and chlorite can be referred to substances of \moderate\ toxicity to fish. Recommendations and Outlook Due to its very reactive nature, chlorine dioxide is rapidly (in a few hours) reduced to chlorite, which is persistent also as a biocide but 16 times less toxic to fish, according to MATC. Therefore, it is much more likely that fish will be exposed to chlorite than to chlorine dioxide in natural waters. Presently accepted, the Maximum-Permitted-Concentration of total residual chlorine (TRC) in waste-water discharging into receiving waters is 0.6 mg/l. If this requirement will not be exceeded, it is unlikely that fish would be exposed to lethal or even to sublethal concentrations of chlorine dioxide or chlorite. Furthermore, chlorine dioxide does not generate toxic nitrogenous (chloramines) or carcinogenic organic residuals (trihalomethanes). All these properties make chlorine dioxide a more promising biocide than chlorine.  相似文献   

15.
Even plants classified as 'nonaccumulators' can sequester concentrations of sodium selenate, sodium selenite, selenocystine and selenomethionine that can strongly influence insect development and survival. These forms of selenium (Se), tested in diet-incorporation bioassays, proved toxic to larvae of a generalist insect herbivore at relatively low levels. Sodium selenite was the most toxic form tested against Spodoptera exigua (Hübner), with an LC(50) of 9.14 microg g(-1) wet wt (21.11 microg g(-1) dry wt). Selenocystine was intermediate with an LC(50) of 15.2 microg g(-1) wet wt. The least toxic forms, sodium selenate and selenomethionine, had LC(50)s below 50 microg g(-1) dry wt, the upper level for tissues of plants classified as nonaccumulators. Ingestion of some forms of Se also affected growth and development. Increasing concentrations of sodium selenate and sodium selenite decreased pupal weight and added significantly to the time needed for development to the pupal and adult stages. The time required to complete the larval stage increased by over 25% and the time from egg to adult emergence was extended by 22% to nearly 30%. Selenocystine and selenomethionine did not significantly increase developmental times, even at concentrations that killed 90% or more of the test populations. Analyses of relative growth rate, relative growth index, and an analysis of covariance technique for measuring growth indicated that the form of Se affected growth rates, growth inhibition responses of the larvae, and toxicological effects. Thus, quantity and the form of Se accumulating in plants grown on Se-contaminated sites are likely to influence the population dynamics of insect herbivores. The implications of these results for the ecology of contaminated sites are discussed.  相似文献   

16.
Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.  相似文献   

17.
A simple, rapid toxicity test was developed using the suspension-cultured fish cell line CHSE-sp derived from chinook salmon Oncorhynchus tshawytscha embryos in order to assess the toxicity of new marine antifouling compounds. The compounds tested were copper pyrithione, Diuron, Irgarol 1051, KH101, Sea-Nine 211, and zinc pyrithione, all of which have been nominated in Japan as possible replacements for organotin compounds. The in vitro acute toxicity (24-h EC50) of the six compounds to these fish cells was evaluated using the dye Alamar Blue to determine cell viability, and then correlated with the results of in vivo chronic toxicities (28-day LC50) to juvenile rainbow trout Oncorhynchus mykiss. The suspension-cultured fish cells were found to be suitable for the screening of such chemicals before performing an in vivo test. The toxicities of the test compounds obtained from both tests, shown in decreasing order, were as follows: copper pyrithione > zinc pyrithione > KH101 > or = Sea-Nine 211 > Diuron > Irgarol 1051. The herbicides Diuron and Irgarol 1051 showed the least toxicity, while the pyrithiones had the greatest toxicity.  相似文献   

18.
Capkin E  Altinok I  Karahan S 《Chemosphere》2006,64(10):1793-1800
The acute toxicity of endosulfan in juvenile rainbow trout (Oncorhynchus mykiss, 10.61+/-1.69 g) was evaluated in glass aquaria under static conditions. Nominal concentrations of endosulfan in the toxicity test ranged from 1.3 microg l(-1) to 29 microg l(-1). The concentrations of endosulfan that killed 50% of the rainbow trout within 24-h (24-h LC50), 48-h LC50, 72-h LC50, and 96-h LC50 were 19.78, 8.89, 5.28, and 1.75 microg l(-1), respectively. None of the unexposed control fish died, and the first fish died 4 h after exposure to 26.3 microg l(-1) of endosulfan. Survival of fish was significantly increased with increasing fish size and decreased with decreased fish size at the same temperature (p<0.001). Temperature also had a significant effect on survival of fish. Alkalinity at levels above 20 mg l(-1) as CaCO3 significantly increased survival of fish at 19.78 microg l(-1) of endosulfan. Increasing alkalinity from 20 mg l(-1) as CaCO3 to 42 or higher concentrations tested in this study (121 mg l(-1) as CaCO3) significantly increased survival of fish (p<0.01). Total hardness ranging from 55 mg l(-1) as CaCO3 to 126 mg l(-1) as CaCO3 did not affect survival of fish exposed to endosulfan. Endosulfan toxicity was found to be irreversible when fish were exposed to minimum concentrations of endosulfan tested. Histologically, fish gills had lamellar edema, separation of epithelium from lamellae, lamellar fusion, and swelling of the epithelial cells. Melanomacrophage centers were scattered throughout the trunk kidney, head kidney, and spleen. The liver of endosulfan-exposed fish had severe focal necrosis. None of these lesions were seen in unexposed control fish. Results indicate that alkalinity, temperature, and fish size affect endosulfan toxicity of rainbow trout.  相似文献   

19.
The acute and sub-chronic effects of four cytostatic drugs—5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)—on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L?1, whereas in case of IM, LC50 was at 70.8 mg L?1. In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L?1. In case of CisPt, LC50 was 349.9 mg L?1 at 48 hpf and it progressively decreased to 81.3 mg L?1 at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L?1 at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L?1 , 72 hpf; 141.6 mg L?1, 96 hpf; 118.0 mg L?1, and 120 hpf; 65.9 mg L?1. In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L?1 concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L?1 is the LOEC. In case of IM, the highest tested concentration (10 mg L?1) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.  相似文献   

20.
Hamblen EL  Cronin MT  Schultz TW 《Chemosphere》2003,52(7):1173-1181
Suspected estrogen modulators include industrial organic chemicals (i.e., xenoestrogens), and have been shown to consist of alkylphenols, bisphenols, biphenylols, and some hydroxy-substituted polycyclic aromatic hydrocarbons. The most prominent structural feature identified to be important for estrogenic activity is a polar group capable of donating hydrogen bonds (i.e., hydroxyl) on an aromatic system. The present study was undertaken to explore the estrogenic activity and acute toxicity of chemicals containing a weaker hydrogen bond donor group on aromatic systems, i.e., the amino substituent. There is a great deal of chemical similarity between aromatic amines (anilines) and aromatic alcohols (phenols). The chemicals chosen for the current study contained an amino-substituted benzene ring with hydrophobic constituents varying in size and shape. Thus, 37 substituted aromatic amines were assayed for estrogenic activity EC50 and acute toxicity LC50 using the Saccharomyces cerevisiae recombinant yeast assay. While the EC50 of 17-beta-estradiol occurs at the 10(-10) range, the aniline with the greatest activity had an EC50 of 10(-6) M. Thus, anilines, in general, are capable only of very weak estrogenic activity in this assay. A comparison of estrogenic potency between the present group of anilines and a set of previously tested analogous phenols indicated that anilines are consistently less estrogenic than phenols. A comparison of hazard indices (EC50/LC50) of these chemicals revealed that, for the vast majority of anilines, the EC50 and LC50 were in the same order of magnitude. More specifically, estrogenic activity of para-substituted alkylanilines increases with alkyl group size up to 5 carbons in length, after which the acute toxicity of the larger alkyl-substituents precluded the ability of the compound to induce the estrogenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号