首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The food web of two intertidal seagrass (Zostera marina and Zostera noltii) beds that may be influenced by the seasonal variation in food source abundance was studied in winter and in summer with δ13C and δ15N analysis. In spite of high relative variation of abundance of main primary producers at the two sites, the food web did not vary between winter and summer. The δ13C range of primary producers was wide. Zostera leaves, the most 13C-enriched source, were not consumed directly by grazers. Deposit and filter feeders have a similar δ13C and could use a mix of suspended and sedimented organic particulate matter, largely composed of detritus from macroalgae to seagrass. This trophic pathway allows the local incorporation of the high biomass produced by seagrasses. The wide δ15N range of predators was linked either to a large variety from omnivore to carnivore predators or to the also wide ranges of δ15N of primary consumers.  相似文献   

2.
Two blennies, Ecsenius lineatus Klausewitz and Ecsenius namiyei (Jordan and Evermann), and a cohabiting territorial damselfish, the Pacific gregory, Stegastes fasciolatus (Ogilby), were collected from shallow reefs in northern Taiwan between September and November 2004, and in October 2005 for stomach content and δ 13C and δ 15N analyses in an effort to study how extensively their food sources overlapped and to delineate the pattern of cohabiting interactions. These analyses showed differences in food use between the Ecsenius blennies and S. fasciolatus. However, there were inconsistencies. Epiphytic algae were their major food items of E. namiyei and E. lineatus. Macroalgae were rarely taken. Nevertheless, δ 13C and δ 15N signatures suggested that E. namiyei and E. lineatus might have assimilated mainly macroalgae-derived detritus instead of epiphytic algae. In contrast, macroalgae were the major food items of S. fasciolatus, followed by epiphytic algae. Differences in both δ 13C and 15N values indicated that for S. fasciolatus, algae (both macroalgae and epiphytic algae) might not be as important as the stomach contents showed. Instead, polychaetes were possibly its major food source. Differences between stomach contents and evidence from the separation of stable isotope signatures between blennies and the Pacific gregory indicate that some of the interspecific interactions derived from exploitative competition may have been alleviated. Moreover, their widespread territory overlap is possibly a sign of mutualism: S. fasciolatus allows territory sharing, while Ecsenius blennies, in return, clean up the algal mat by removing sand and detritus.  相似文献   

3.
The feeding ecology of the green tiger shrimp Penaeus semisulcatus was studied in inshore fishing grounds off Doha, Qatar, using a combination of stable isotope (δ13C and δ15N) analysis and gut contents examination. Samples of post-larvae, juvenile and adult shrimp and other organisms were collected from intertidal and subtidal zones during the spawning season (January–June). Shrimp collected from shallow water seagrass beds were mostly post-larvae and juveniles and were significantly smaller than the older juveniles and adults caught in deeper macroalgal beds. Gut content examination indicated that post-larvae and juvenile shrimp in seagrass beds fed mainly on benthos such as Foraminifera, polychaetes, benthic diatoms and small benthic crustaceans (amphipods, isopods and ostracoda), whereas larger shrimp in the macroalgal beds fed mainly on bivalve molluscs and to a lesser extent polychaetes. In shrimp from both seagrass and algal beds, unidentifiable detritus was also present in the gut (18, 32%). δ13C values for shrimp muscle tissue ranged from −9.5 ± 0.26 to −12.7 ± 0.05‰, and δ15N values increased with increasing shrimp size, ranging from 4.1 ± 0.03 to 7.7 ± 0.11‰. Both δ15N values and δ13C values for shrimp tissue were consistent with the dietary sources indicated by gut contents and the δ13C and δ15N values for primary producers and prey species. The combination of gut content and stable isotope data demonstrates that seagrass beds are important habitats for post-larvae and juvenile P. semisulcatus, while the transition to deeper water habitats in older shrimp involves a change in diet and source of carbon and nitrogen that is reflected in shrimp tissue stable isotope ratios. The results of the study confirm the linkage between sensitive shallow water habitats and the key life stages of an important commercially-exploited species and indicate the need for suitable assessment of the potential indirect impacts of coastal developments involving dredging and land reclamation.  相似文献   

4.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

5.
The decomposition of the mangrove Rhizophora mangle and the seagrass Thalassia testudinum was examined using litterbags along a natural gradient in nutrient availability. Seagrass leaves had a higher fraction of their biomass in the labile pool (57%), compared to mangrove leaves (36%) and seagrass rhizomes (29%); the overall decomposition rates of the starting material reflected the fractionation into labile and refractory components. There was no relationship between the N or P content of the starting material and the decomposition rate.

Nutrient availability had no influence on decomposition rate, and mass was lost at the same rate from litterbags that were buried in the sediment and litterbags that were left on the sediment surface. The dynamics of N and P content during decomposition varied as a function of starting material and burial state. N content of decomposing mangrove leaves increased, but seagrass rhizomes decreased in N content during decomposition while there was no change in seagrass leaf N content. These same general patterns held for P content, but buried seagrass leaves increased in P content while surficial leaves decreased. δ13C and δ15N changed by as much as 2‰ during decomposition.  相似文献   

6.
The decay of non-native and native seaweed mixing may modify sediment biogeochemistry and organic matter transfers within benthic food webs according to their composition and biomass. The non-native species Sargassum muticum was deliberately added to the sediment of an intertidal sandflat at different biomass and mixed to the native species Ulva sp. and Fucus vesiculosus. The sediment porewater was then 13C and 15N enriched to test whether both detrital diversity and biomass influenced the transfer of porewater carbon and nitrogen to the sediment and to the macrofauna consumers. More 15N-nitrogen was mobilized to sediments and macrofauna when the 3-species detrital mixing was buried, probably because this mixing provided species-specific compounds such as polyphenols due to the presence of S. muticum and F. vesiculosus, as well as large amounts of nitrogen due to the presence of Ulva. Our study revealed the importance of detrital diversity and non-native seaweeds for the nitrogen cycling in the benthic food web.  相似文献   

7.
The decomposition process of, and the meiobenthic and nematode colonization on, stranded macroalgae were studied along a macrotidal, ultradissipative sandy beach gradient at De Panne (Belgium). The horizontal patterns of macro- and meiofaunal densities and diversity in this beach have been well-documented. Defaunated Fucus detritus was buried in situ in litter bags, 10–15 cm under the sediment surface, at seven stations across the beach profile. Colonization by (meio)fauna and organic matter decomposition rates measured as carbon, nitrogen, phosphorus and dry weight loss, were studied after 10, 21 and 52 days of incubation. Algal detritus was colonized mainly by nematodes dominated by Rhabditidae, Sabatieria, Dorylaimoidea, Monhystera, Paracanthonchus and Daptonema. Organic matter weight loss was slowest at the higher and lower shore and fastest in the mid-shore, in line with the horizontal pattern of nematode diversity in the beach sediment. However, there was no consistent relationship between nematode diversity inside the litter bags and organic matter weight loss, prohibiting an unequivocal conclusion on whether the observed parallel between extant nematode diversity and organic matter decomposition rate indicates a causal relationship or follows from the fact that both are governed by the same set of physicochemical conditions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
In estuaries, eelgrass meadows contribute to fundamental ecosystem functions of estuaries, providing food to several predators and buffering the negative effects of eutrophication. We asked whether the presence of the eelgrass Zostera noltii decreased the nitrogen concentration in the overlying water, affected the sources of nitrogen sequestrated by primary producers and changed the benthic and pelagic food web structures. We also studied the importance of these food webs in providing food to fish. We compared bare sediment to sediment covered by a Z. noltii meadow, and examined nutrient concentrations in the water column and δ15N in primary producers as indicators of anthropogenic inputs of nutrients. We then measured both δ13C and δ15N in the tissues of plants and consumers to establish food web structures. There were no differences in the concentrations and sources of nitrogen between sites. Rather, δ15N values indicated anthropogenic inputs of N (e.g. sewage discharges, agriculture) in both sites. There were no major differences in the structure of the planktonic food web, which was in part sustained by particulate organic matter and supported most predator fish, and in the structure of the benthic food web. Nonetheless, there were differences in the sources of food for omnivore consumers and for the detritivore Scrobicularia plana. Overall, the benthic food web did not use food derived from the eelgrass or macroalgae deposited on the substratum. Suspension feeders used particulate and sediment organic matter, whereas the δ13C and δ15N values of the other consumers indicated a likely contribution of benthic microalgae. Furthermore, in both habitats we found large variability in the isotope signatures of benthic macrofauna consumers, which did not allow distinguishing clearly different trophic groups and indicated a high level of omnivory and a mixed diet opportunistically making use of the availability of food in the surroundings.  相似文献   

9.
We used natural abundance measurements of stable carbon and nitrogen isotopes and a short-term 15N-enrichment experiment to explore the importance of river-derived and autochthonous sources to the diet of intertidal suspension-feeding bivalves in the Ría de Arosa, an oceanic-dominated system in northwest Spain. Highly seasonal and intense phytoplankton "bloom" events occur in this estuary. However, relatively low phytoplankton standing crop and productivity are present during much of the year, suggesting that food sources other than phytoplankton must support bivalves during these periods. Bivalves (Cerastoderma edule, Tapes decussatus, Mytilus galloprovincialis) were sampled quarterly at four intertidal stations along the length of the estuary with increasing distance from the Ulla River. Muscle tissue was consistently enriched in 13C and 15N relative to stomach contents. The stable C isotope values of bivalves indicated that river-derived inputs were, at most, a minor component of diet. These values suggested the potential importance of benthic microalgae to bivalve diet much of the year and the incorporation of 15N label applied to the sediment surface into stomach contents and muscle tissue in a field experiment supported this conclusion. Other labeled components of the microbenthos such as bacteria could also have been ingested. 13C-depleted values of bivalves in May coincided with elevated offshore chlorophyll a concentrations, suggesting the increased use of a phytoplankton source during the spring. We propose that intertidal suspension-feeding bivalves in this estuary use primarily resuspended microbenthos during periods of low phytoplankton concentration, but that phytoplankton increases in relative dietary importance during bloom events.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

11.
The fate of the benthic bacterial biomass is a topic of major importance in understanding how soft-bottom environments function. Because of their high abundance, production and nutritional value, benthic bacteria may constitute an important food resource for benthic fauna. The trophic role of bacteria for a nematode community on the Brouage mudflat (Marennes-Oléron-France), dominated by three species: Chromadora macrolaima (64% of the abundance), Daptonema oxycerca (15%) and Ptycholaimellus jacobi (8%), was determined in grazing experiments using 15N pre-enriched bacteria. On intertidal flats, seasonal, tidal and circadian cycles induce strong variations in environmental conditions. Grazing experiments were performed in order to measure the effects of abiotic (temperature, salinity and luminosity) and biotic (bacterial and algal abundances) factors on assimilation rates of bacteria by nematodes. In order to assess simultaneously bacteria and algal assimilation rates, algal abundances were modified adding 13C pre-enriched Navicula phyllepta. Assimilation rate was significantly lower at 5°C; moreover, general trend shows a prominent temperature effect with an optimum around 30°C. Assimilation at salinity 18 was not significantly different from the assimilation at salinity 31. Assimilation was higher under light conditions than in the dark. Above 109 bacteria ml−1, assimilation of bacteria remained unaffected by bacterial abundance. However, assimilation of algae increased with the algal concentration. Nematode kept feeding under conditions of stress, which are typical of the surficial sediment habitat and they appeared to be principally dependent on the algal resource.  相似文献   

12.
Mucus released by scleractinian corals can act as an important energy and nutrient carrier in coral reef ecosystems, and a distinct isotopic signature would allow following the fate of this material. This study investigates the natural C and N stable isotopic signatures of mucus released by four scleractinian coral genera (Acropora, Fungia, Pocillopora and Stylophora) in comparison with those of suspended particulate organic matter (POM) in seawater of a Northern Red Sea fringing coral reef near Aqaba, Jordan. The natural δ13C and δ15N signatures of coral mucus differed significantly from seawater POM for the majority of seasonal comparisons, but were inappropriate for explicit tracing of mucus in the coral reef food web. Thus, a labeling technique using stable isotope tracers (13C and 15N) was developed that produced δ13C values of up to 122 ± 5‰ (mean ± SE) and δ15N of up to 2,100 ± 151‰ in mucus exuded by Fungia corals. 13C and 15N-enriched compounds were rapidly (within 3 h) and light-dependently transferred from the endosymbiotic zooxanthellae to the mucus-producing coral host. The traceability of 15N-labeled mucus was examined by evaluating its uptake and potential utilization by epizoic acoelomorph Waminoa worms naturally occurring on a range of scleractinian coral taxa. This tracer experiment resulted in uptake of coral mucus by the coral-associated acoelomorphs and further demonstrated the possibility to trace stable isotope-labeled coral mucus by revealing a new trophic pathway in coral reef ecosystems.  相似文献   

13.
In an intertidal Zostera noltii Hornem seagrass bed, food sources used by sediment meiofauna were determined seasonally by comparing stable isotope signatures (δ13C, δ15N) of sources with those of nematodes and copepods. Proportions of different carbon sources used by consumers were estimated using the SIAR mixing model on δ13C values. Contrary to δ15N values, food source mean δ13C values encompassed a large range, from −22.1 ‰ (suspended particulate organic matter) to −10.0 ‰ (Z. noltii roots). δ13C values of copepods (from −22.3 to −12.3 ‰) showed that they use many food sources (benthic and phytoplanktonic microalgae, Z. noltii matter). Nematode δ13C values ranged from −14.6 to −11.4 ‰, indicating a strong role of microphytobenthos and/or Z. noltii matter as carbon sources. The difference of food source uses between copepods and nematodes is discussed in light of source accessibility and availability.  相似文献   

14.
Five field surveys were conducted in an estuarine intertidal sandflat of the Seto Inland Sea (Japan) between April 1994 and April 1995. Chlorophyll a, pheopigments, total organic carbon and acid-volatile sulphides (AVS) of surface and subsurface sediments, and macrofaunal assemblages were investigated in parallel at 15 stations. Monthly hydrological data of low-tide creek water adjacent to the flat were used as a complementary environmental characterisation of the study area. Strong temporal changes were found among sampling dates, most remarkably in autumn with a major increase of algal detritus and AVS, a sharp reduction in macrofaunal abundances and species richness, and a massive mortality of the clam Ruditapes philippinarum. This dystrophic event was preceded by a photoautotrophic and hypertrophic spring–summer characterized by abundant fresh (i.e., living) algal material, including microphytobenthos and macroalgae (Ulva sp.). In summer, abundant macrofaunal assemblages reached the highest biomass values (455 g wet weight m−2 or 60.6 g ash free dry weight m−2), with a major contribution of filter-feeding bivalves Musculista senhousia and R. philippinarum. These are among the highest values reported in the literature for sedimentary shores. From autumn, there was a progressive recolonisation of macrofauna, initiated by few opportunistic polychaetes (e.g., Cirriformia tentaculata and Polydora sp.), apparently promoting a fast sediment recovery in winter, and followed by new bivalve recruits in the next spring. This study provides the first evidence of significant and interlinked within-year changes in chemical characteristics of sediments and macrofaunal assemblages in an estuarine intertidal flat at a small spatial scale (i.e., tens of meters). This demonstrates the high temporal variability of species–environment relations in these systems and a close relationship in seasonally driven trophodynamic processes among primary producers and benthic consumers. We conclude that a thorough parallel evaluation of the temporal changes in chemical characteristics of sediments should be taken into account in assessing the year-round distribution and changes of intertidal macrofauna, particularly in eutrophic, estuarine intertidal flats.An erratum to this article can be found at  相似文献   

15.
An assessment of litter and detritus decomposition and nitrogen content of decomposing litter is presented for ten important seaweeds within a southern Strait of Georgia (British Columbia, Canada) seaweed community sampled from August 1975 until October 1976. Litter decomposition rates varied among species with the time required for litter to disappear from litter bags ranging from 6 d for the lamina of Nereocystis luetkeana to about 70 d for Fucus distichus. Decomposition was characterized by an accelerating increase in the nitrogen: dry weight ratio of remnant litter as decomposition proceeded. Iridaea cordata detritus decomposed most rapidly, at 5.7% d-1, while rates for Gigartina papillata, N. luetkeana, Laminaria saccharina and Laminaria groenlandica ranged from 1.8 to 3.6% d-1. The remaining species decomposed more slowly. There was a tendency toward more rapid decomposition with decreasing crude fibre content and detritus particle size; however, it appears that morphology, habitat and growth rate are also correlated with relative decomposition rates. Of 43 taxa identified within quantitative litter collections, F. distichus (41%), I. cordata (26%), N. luetkeana (27%) and Laminaria spp. (4%) accounted for 98% of total deposition with mean peak accumulation occurring in August and September from a low near zero in January and February. Litter distribution was patchy, with most litter decomposing near its place of deposition. The application of litter decomposition rates to measured litter accumulation in a mathematical simulation of decomposition predicted the rate of seaweed litter decomposition to peak at about 1.1 g AFDW (ash-free dry weight) m-2 d-1 in early September from a mid-winter low near zero. In total, 56±4% of decomposing litter formed detritus, with the remainder being released as soluble matter. The annual contribution of seaweed litter biomass to detrital pathways from our study site was calculated to be 152 g AFDW m-2.  相似文献   

16.
Blood and feathers are the most targeted tissues for isotopic investigations in avian ecology, primarily because they can be easily and non-destructively sampled on live individuals. Comparing blood and feather isotopic ratios can provide valuable information on dietary shifts, trophic specialization and migration patterns, but it requires a good knowledge of the isotopic differences between the two tissues. Here, δ13C and δ15N values of whole blood (in blood cells of a few species) and simultaneously grown body feathers were measured in seabird chicks to quantify the tissue-related isotopic differences. Seabirds include 27 populations of 22 wild species that were sampled in 2000–2008, and a review of the literature added 8 groups (including adult birds) to the analysis. The use of a large data set that overall encompasses wide δ13C and δ15N ranges allowed us to depict for the first time accurate relationships between blood and feather isotopic ratios across avian taxa. Blood was impoverished in 13C and generally in 15N compared with feathers. Both mean δ13C and δ15N values of feathers and blood were highly positively and linearly related [feather δ13C = 0.972 (±0.020) blood δ13C + 0.962 (±0.414), and feather δ15N = 1.014 (±0.056) blood + 0.447 (±0.665), respectively; both P < 0.0001]. The regressions should be applied to mathematically correct feather or whole blood δ13C and δ15N values when comparing isotopic ratios within and between ecological studies on birds.  相似文献   

17.
Food preferences, consumption rates and dietary assimilation related to food quality were investigated for the large semi-terrestrial and litter-consuming mangrove crab Ucides cordatus cordatus (Ocypodidae, L. 1763) in northern Brazil. Stomach contents were composed of mangrove leaves (61.2%), unidentified plant material and detritus (28.0%), roots (4.9%), sediment (3.3%), bark (2.5%), and animal material (0.1%). U. cordatus prefers Rhizophora mangle over Avicennia germinans leaves despite a higher nitrogen content, lower carbon to nitrogen (C/N) ratio and lower tannin content of the latter. Also, assimilation rates for senescent R. mangle leaves (C: 79.3%, N: 45.4%) were higher than for A. germinans leaves (C: 40.6%, N: 9.1%). Faeces composition indicates that A. germinans leaves were more difficult to masticate and digest mechanically. The leaf-ageing hypothesis, according to which crabs let leaves age in burrows to gain a more palatable and nutritive food, was rejected for U. cordatus since N content, C/N ratio and the abundance of microorganisms did not differ significantly between senescent leaves and leaves taken from burrows. The low microbial biomass on leaf surfaces and in the sediment indicates its minor importance for the nutrition of U. cordatus. It is concluded that high ingestion and assimilation rates of a R. mangle diet together with the consumption of algae allow for a high intake of C, N, and energy. The data suggest that the digestibility of mangrove leaves by U. cordatus is not hampered by tannins. This may have provided a competitive advantage over other leaf-consuming invertebrates unable to digest mangrove litter with high tannin concentrations. Due to the large stock biomass of U. cordatus in the study area, a great amount of finely fragmented faeces is produced (about 7.1 ton dry matter ha−1 year−1 in a R. mangle forest) which is enriched in C, N and bacterial biomass compared to the sediment. The decomposition of mangrove litter, and thus nutrient and energy transfer into the sediment, is greatly enhanced due to litter processing by U. cordatus.  相似文献   

18.
R. T. Kneib 《Marine Biology》1987,96(2):215-223
Postlarval and juvenile grass shrimp (Palaemonetes pugio Holthuis) ≦15 mm total length (TL) were abundant at low tide in shallow aquatic microhabitats (i.e. puddles and films of residual tidal water) in the intertidal zone of a salt marsh on Sapelo Island, Georgia, USA from 1982 to 1984. The highest concentrations of young P. pugio occurred at 190 to 200 cm above mean low water, ∼10 to 20 cm below mean high water. The intertidal distributions of young grass shrimp expanded and contracted with changes in tidal amplitude. Postlarval grass shrimp (6 to 8 mm TL) continuously recruited into the intertidal marsh population from May until October, but densities varied in a regular pattern with peaks in abundance occurring at ∼2-week intervals, corresponding to spring tide periods in the lunartidal cycle. Although present nearly year-round in the intertidal marsh, juveniles (9 to 15 mm TL) were most abundant from August to October. Apparent growth rates of individuals up to 15 mm TL averaged 0.268±0.026 (mean±95% C.I.) mm d-1 from May to October and 0.070±0.032 mm d-1 in November and December. Unlike larger aquatic organisms, which can forage in the emergent marsh only when it is flooded by the tide, juvenile grass shrimp have constant access to intertidal resources. Although potentially important predators in this system, the role of young P. pugio in the trophic organization of salt marsh benthic invertebrate assemblages has yet to be examined. Contribution No. 576 of the University of Georgia Marine Institute  相似文献   

19.
 The diet of juvenile pink shrimp (Farfantepenaeus duorarum Burkenroad, previously Penaeus duorarum) from Long Key Bight, Florida Keys, was studied using stomach content examination, pigment measurements, and stable isotope (δ13C and δ15N) analysis. Samples were taken over approximately 24 h on four occasions from December 1997 to June 1998. Juvenile F. duorarum fed nocturnally, the main prey being the seagrass shrimp Thor floridanus (Decapoda: Caridea: Hippolytidae), which accounted for 34% of the stomach content volume. Other common components of the diet were bivalves (mainly Tellina sp.) with 15% volume, calcareous algae (8%), plant detritus (5%), copepods (3%), and seagrass fragments (2%). Pigment concentrations (chlorophyll a plus phaeopigments) in F. duorarum stomachs ranged from 7 to 73 mg l−1 or 40 to 310 ng stomach−1. The exponential gastric evacuation rate was determined experimentally at 1.3 ± 0.5 h−1. Daily rations (in percent body weight) calculated from time series of stomach fullness ranged between 11 and 16% d−1. Total consumption by the population (in wet weight) ranged between 0.05 and 0.3 g m−2 d−1. Stable isotope measurements confirmed that T. floridanus was the main food source for F. duorarum. δ13C-values of whole animals of both species were identical at −10.0 ± 1.6‰ PDB. δ15N-values of both species were also not significantly different (pooled mean: 5.9 ± 1.7‰). Stomach contents of wild-caught F. duorarum and stomach contents of F. duorarum fed T. floridanus also showed similar stable isotope values. Received: 12 August 1999 / Accepted: 21 March 2000  相似文献   

20.
Samples of sediments from Australian seagrass (Zostera capricorni Aschers.) beds were taken in June to August 1983 (for15N experiments) and November 1982 to January 1983 (14N experiments). The ammonium pool turned-over every 0.4 to 0.8 d, as determined with a15N isotope-dilution technique. The ammonium pool in subtidal bare areas turned-over two to three times more slowly than in adjacent seagrass beds. Gross rates ofin situ ammonium regeneration equalled those of utilization, and ranged from 0.04 to 0.35 mol cm-3 d-1, or from 50 to 490 mg N m-2 d-1 over the upper 10 cm of the sediment. The potential rate of glycine utilization, measured with a large excess of glycine added to anaerobic incubations, ranged from 0.21 to 0.39mol cm-3 d-1, butin situ rates were probably much lower. Between 35 and 65% of added15N-glycine was deaminated over 12 h, and the remainder was most likely assimilated by microbes. Evidence for the seagrasses taking up glycine was equivocal, owing to the rapid deamination of the amino acid and the likelihood that they assimilated the labelled ammonium produced from the glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号